多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略

陈辉 魏凤旗 韩崇昭

陈辉, 魏凤旗, 韩崇昭. 多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略[J]. 雷达学报, 2023, 12(3): 529–540. doi: 10.12000/JR22116
引用本文: 陈辉, 魏凤旗, 韩崇昭. 多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略[J]. 雷达学报, 2023, 12(3): 529–540. doi: 10.12000/JR22116
CHEN Hui, WEI Fengqi, and HAN Chongzhao. UAV path planning strategy based on threat avoidance in multiple extended target tracking optimization[J]. Journal of Radars, 2023, 12(3): 529–540. doi: 10.12000/JR22116
Citation: CHEN Hui, WEI Fengqi, and HAN Chongzhao. UAV path planning strategy based on threat avoidance in multiple extended target tracking optimization[J]. Journal of Radars, 2023, 12(3): 529–540. doi: 10.12000/JR22116

多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略

DOI: 10.12000/JR22116
基金项目: 国家自然科学基金项目(62163023, 62173266, 62103318, 61873116),甘肃省教育厅产业支撑计划项目(2021CYZC-02)
详细信息
    作者简介:

    陈 辉,博士,教授,博士生导师,主要研究方向为雷达目标跟踪、数据融合与电子对抗等

    魏凤旗,硕士生,研究方向为数据融合与多目标跟踪技术

    韩崇昭,教授,主要研究方向为多源信息融合、随机控制与自适应控制、非线性频谱分析等

    通讯作者:

    陈辉 huich78@hotmail.com

  • 责任主编:易伟 Corresponding Editor: YI Wei
  • 中图分类号: TP274

UAV Path Planning Strategy Based on Threat Avoidance in Multiple Extended Target Tracking Optimization

Funds: The National Natural Science Foundation of China (62163023, 62173266, 62103318, 61873116), The Industrial Support Project of Education Department of Gansu Province (2021CYZC-02)
More Information
  • 摘要: 为了降低无人机执行侦察任务时被摧毁的概率,该文提出一种有效减少威胁的路径规划算法。首先利用高分辨率机载雷达对多扩展目标进行稳健的跟踪估计,然后根据三向决策规则对各目标按威胁进行分类,并利用模糊理想解相似性排序技术(TOPSIS)的方法计算目标威胁度,综合多任务决策联合优化(联合评估目标威胁度和目标跟踪质量)作为评价准则对无人机进行路径规划。仿真实验表明,模糊威胁度评估方法在多扩展目标跟踪环境下是有效的,所提无人机路径规划算法是合理的,在不损失目标跟踪精度的条件下有效降低了目标威胁度。

     

  • 图  1  目标威胁评估过程

    Figure  1.  Target threat assessment process

    图  2  路径规划的基本原理图

    Figure  2.  Basic schematic diagram of path planning

    图  3  目标状态图示

    Figure  3.  Target status diagram

    图  4  目标威胁度评估

    Figure  4.  Target threat assessment

    图  5  目标实际轨迹与UAV原始轨迹

    Figure  5.  Actual target trajectory and UAV original trajectory

    图  6  穿越敌占区的UAV轨迹

    Figure  6.  UAV track crossing enemy occupied area

    图  7  完全自保的UAV轨迹

    Figure  7.  Fully self insured UAV trajectory

    图  8  MC实验中穿越敌占区的UAV轨迹分布

    Figure  8.  Trajectory distribution of UAV crossing enemy occupied area in MC experiment

    图  9  MC实验中完全自保的UAV轨迹分布

    Figure  9.  Trajectory distribution of fully self protected UAV in MC experiment

    图  10  目标威胁度评估统计均值

    Figure  10.  Statistical mean value of target threat assessment

    图  11  多扩展目标跟踪效果图

    Figure  11.  Multi-extended target tracking rendering

    图  12  目标质心位置GOSPA距离统计

    Figure  12.  GOSPA distance statistics of target centroid position

    图  13  目标形状(椭圆长短轴)估计GOSPA距离统计

    Figure  13.  Target shape (major and minor axes of ellipse) estimation GOSPA distance statistics

    图  14  多目标势估计

    Figure  14.  Multi-objective cardinality estimation

    表  1  分类风险函数

    Table  1.   Classification risk function

    分类行为$ A({\text{P}}) $$ \neg A({\text{N}}) $
    $ {a_{\text{P}}} $$ {\lambda _{{\text{PP}}}} $$ {\lambda _{{\text{PN}}}} $
    $ {a_{\text{B}}} $$ {\lambda _{{\text{BP}}}} $$ {\lambda _{{\text{BN}}}} $
    $ {a_{\text{N}}} $$ {\lambda _{{\text{NP}}}} $$ {\lambda _{{\text{NN}}}} $
    下载: 导出CSV

    表  2  GIW-MBer预测过程

    Table  2.   GIW-MBer prediction process

     输入:${\boldsymbol{\zeta}} _{k - 1}^{\left( {i,j} \right)}$。
     预测第j个GIW分量的参数:
        ${\boldsymbol{m}}_{k|k - 1}^{\left( {i,j} \right)} = {\boldsymbol{F}}_{k|k - 1}^i{\boldsymbol{m}}_{k - 1}^{\left( {i,j} \right)}$
        ${\boldsymbol{P}}_{k|k - 1}^{\left( {i,j} \right)} = {\boldsymbol{F}}_{k|k - 1}^i{\boldsymbol{P}}_{k - 1}^{\left( {i,j} \right)}{\left( {{\boldsymbol{F}}_{k|k - 1}^i} \right)^{\rm T} } + {{\boldsymbol{Q}}_k}$
        $v_{k|k - 1}^{\left( {i,j} \right)} = {{\rm{e}}^{ - \frac{ { {T_s} } }{\tau } } }v_{k - 1}^{\left( {i,j} \right)}$,其中$ \tau $为时间衰减常数
        ${\boldsymbol{V} }_{k|k - 1}^{\left( {i,j} \right)} = \dfrac{ {v_{k|k - 1}^{\left( {i,j} \right)} - d - 1} }{ {v_{k - 1}^{\left( {i,j} \right)} - d - 1} }{\boldsymbol{V}}_{k - 1}^{\left( {i,j} \right)}$
        ${\boldsymbol{X}}_{k|k - 1}^{\left( {i,j} \right)} = \dfrac{ {{\boldsymbol{V}}_{k|k - 1}^{\left( {i,j} \right)} } }{ {v_{k|k - 1}^{\left( {i,j} \right)} - 2d - 2} }$
     输出:${\boldsymbol{\zeta}} _{k|k - 1}^{\left( {i,j} \right)}$。
    下载: 导出CSV

    表  3  GIW-MBer更新过程

    Table  3.   GIW-MBer update process

     输入:${\boldsymbol{\zeta}} _{k|k - 1}^{\left( {i,j} \right)}$,量测集划分W
     更新第j个GIW分量的参数:
        $\bar {\boldsymbol{z} }_k^{\boldsymbol{W} } = \dfrac{1}{ {\left| {\boldsymbol{W} } \right|} }\displaystyle\sum\limits_{{\boldsymbol{z}}_k^{\left( i \right)} \in {\boldsymbol{W}}} { {\boldsymbol{z} }_k^{\left( i \right)} }$
        ${\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} = \dfrac{ { {\boldsymbol{V} }_{k|k - 1}^{\left( {i,j} \right)} } }{ {v_{k|k - 1}^{\left( {i,j} \right)} - 2d - 2} }$
        ${\boldsymbol{S} }_{k|k - 1}^{\left( {i,j,W} \right)} = { {\boldsymbol{H} }_k}{\boldsymbol{P} }_{k|k - 1}^{\left( {i,j} \right)}{\boldsymbol{H} }_k^{\text{T} } + \dfrac{ { {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} } }{ {\left| {\boldsymbol{W} } \right|} }$
        ${\boldsymbol{K}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} = {\boldsymbol{P}}_{k|k - 1}^{\left( {i,j} \right)}{\boldsymbol{H}}_k^{\text{T} }{\left( {{\boldsymbol{S}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} } \right)^{ - 1} }$
        ${\boldsymbol{\varepsilon} } _{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} = \bar {\boldsymbol{z} }_k^{\boldsymbol{W} } - { {\boldsymbol{H} }_k}{\boldsymbol{m} }_{k|k - 1}^{\left( {i,j} \right)}$
        ${\boldsymbol{m}}_k^{\left( {i,j} \right)} = {\boldsymbol{m}}_{k|k - 1}^{\left( {i,j} \right)} + {\boldsymbol{K}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)}{\boldsymbol{\varepsilon}} _{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)}$
        ${\boldsymbol{P} }_k^{\left( {i,j} \right)} = {\boldsymbol{P} }_{k|k - 1}^{\left( {i,j} \right)} - {\boldsymbol{K} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)}{\boldsymbol{S}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)}{\left( { {\boldsymbol{K} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} } \right)^{\text{T} } }$
        ${\boldsymbol{Z} }_k^{\boldsymbol{W}} = \displaystyle\sum\limits_{ {\boldsymbol{z} }_k^{\left( i \right)} \in {\boldsymbol{W} } } {\left( { {\boldsymbol{z} }_k^{\left( i \right)} - \bar {\boldsymbol{z} }_k^{\boldsymbol{W}}} \right){ {\left( { {\boldsymbol{z} }_k^{\left( i \right)} - \bar {\boldsymbol{z} }_k^{\boldsymbol{W}}} \right)}^{\text{T} } } }$
        $\begin{aligned} {\boldsymbol{N} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} =& {\left( { {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} } \right)^{\frac{1}{2} } }{\left( { {\boldsymbol{S} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} } \right)^{ - \frac{1}{2} } }{\boldsymbol{\varepsilon} } _{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} \\ & \times {\left( { {\boldsymbol{\varepsilon} } _{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} } \right)^{\text{T} } }{\left( { {\boldsymbol{S} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} } \right)^{ - \frac{ {\text{T} } }{2} } }{\left( { {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} } \right)^{\frac{ {\text{T} } }{2} } } \end{aligned}$
        $v_k^{\left( {i,j,{\boldsymbol{W}}} \right)} = v_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} + \left| {\boldsymbol{W} } \right|$
        ${\boldsymbol{V} }_k^{\left( {i,j,{\boldsymbol{W} } } \right)} = {\boldsymbol{V} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} + {\boldsymbol{N} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} + {\boldsymbol{Z} }_k^{\boldsymbol{W} }$
        ${\boldsymbol{X} }_k^{\left( {i,j,{\boldsymbol{W} } } \right)} = \dfrac{ { {\boldsymbol{V} }_k^{\left( {i,j,{\boldsymbol{W} } } \right)} } }{ {v_k^{\left( {i,j,{\boldsymbol{W} } } \right)} - 2d - 2} }$
     输出:${\boldsymbol{\zeta}} _k^{\left( {i,j} \right)}$。
    下载: 导出CSV

    表  4  基于威胁规避的UAV路径规划算法

    Table  4.   UAV path planning algorithm for threat avoidance

     输入:$ k - 1 $时刻多扩展目标多特征信息${{\boldsymbol{\zeta}} _{k - 1} }$与UAV坐标
       ${{\boldsymbol{x}}_{s,k - 1} }$,其中${{\boldsymbol{\zeta}} _{k - 1} } = \left\{ { { {\boldsymbol{m} }_{k - 1} },{ {\boldsymbol{P} }_{k - 1} },{v_{k - 1} },{ {\boldsymbol{V} }_{k - 1} } } \right\}$。
     步骤1 多扩展目标跟踪的预测过程,得到$ {f_{k|k - 1}}\left( { \cdot | \cdot } \right) $。
     步骤2 路径规划:
        ${\hat {\boldsymbol{\xi}} _{k|k - 1} } = {\text{Sfun} }\left\{ { {f_{k|k - 1} }\left( { \cdot | \cdot } \right)} \right\}$,
        确定所有可能的路径规划方案${{\boldsymbol{C}}_k}$。
        ${\text{for all } }c \in {{\boldsymbol{C}}_k}{\text{ do} }$
          生成PIMS:${{\boldsymbol{Z}}_k}\left( u \right)$,
          量测集划分:${\boldsymbol{\rho}} \angle {{\boldsymbol{Z}}_k}\left( u \right)$,
          计算伪更新后验密度$ {f_{k,c}}\left( { \cdot | \cdot } \right) $,
          提取状态的统计平均:${\hat {\boldsymbol{\xi}} _{k,c} } \leftarrow {\text{Sfun} }\left\{ { {f_{k,c} }\left( { \cdot | \cdot } \right)} \right\}$,
          计算$\mathcal{D}\left( { {{\boldsymbol{\xi}} _{k,c} },{ {\bar {\boldsymbol{\xi}} }_{k,c} } } \right)$和$ \mathcal{V}\left( c \right) $。
        $ {\text{end for}} $
        求解控制方案:${\hat c_k} = \mathop {\arg \min }\limits_{c \in {{\boldsymbol{C}}_k} } \{ {w_\mathcal{V} }\mathcal{V}\left( c \right)$
        $+ {w_\mathcal{D} }\mathcal{D}({{\boldsymbol{\xi}} _{k,c} },{\bar {\boldsymbol{\xi}} _{k,c} })\}$。
     步骤3 多扩展目标跟踪的更新过程,得到$ {f_{k|k}}\left( { \cdot | \cdot } \right) $。
     步骤4 提取多扩展目标状态信息${{\boldsymbol{\xi}} _k}$,计算目标势${N_k} = \left| { {{\boldsymbol{\xi}} _k} } \right|$。
     输出:k时刻UAV坐标${{\boldsymbol{x}}_{s,k} }$,目标势$ {N_k} $,多扩展目标状态集${{\boldsymbol{\xi}} _k}$。
    下载: 导出CSV

    表  5  硬件配置

    Table  5.   Hardware configuration

    参数数值
    CPU主频3.1 GHz
    最高睿频5.2 GHz
    内存类型DDR4 3200 MHz
    最大内存带宽76.8 GB/s
    下载: 导出CSV

    表  6  目标状态

    Table  6.   Target status

    目标编号位置(m; m)速度(m/s; m/s)运动方向(°)
    1[100; 100][–10; –10]0
    2[200; 200][–10; –10]0
    3[100; 100][–5; –5]0
    4[–100; 100][10; –10]0
    5[100; 100][5; 5]180
    6[100; 100][–10; 10]90
    下载: 导出CSV

    表  7  各运动体的初始状态

    Table  7.   Initial state of each moving object

    目标出生时刻
    (s)
    消亡时刻
    (s)
    初始状态
    (m; m; m/s; m/s)
    目标1140[–300; 100; 30; –10]
    目标21140[100; 200; –15; –30]
    目标31635[50; –600; –20; 30]
    目标42135[–600; –200; 10; 35]
    目标52630[200; 500; –50; 20]
    目标62630[–600; 600; 40; –30]
    UAV//[600; –800; –30; 40]
    下载: 导出CSV
  • [1] AGGARWAL S and KUMAR N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges[J]. Computer Communications, 2020, 149: 270–299. doi: 10.1016/j.comcom.2019.10.014
    [2] BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171–1187. doi: 10.1109/OJCOMS.2021.3081996
    [3] BOLOURIAN N and HAMMAD A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection[J]. Automation in Construction, 2020, 117: 103250. doi: 10.1016/j.autcon.2020.103250
    [4] BASIRI A, MARIANI V, SILANO G, et al. A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture[J]. Journal of Navigation, 2022, 75(2): 364–383. doi: 10.1017/S0373463321000825
    [5] KARUR K, SHARMA N, DHARMATTI C, et al. A survey of path planning algorithms for mobile robots[J]. Vehicles, 2021, 3(3): 448–468. doi: 10.3390/vehicles3030027
    [6] REN Tianzhu, ZHOU Rui, XIA Jie, et al. Three-dimensional path planning of UAV based on an improved A algorithm[C]. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 2016: 140–145.
    [7] SARANYA C, UNNIKRISHNAN M, ALI S A, et al. Terrain based D* algorithm for path planning[J]. IFAC-PapersOnLine, 2016, 49(1): 178–182. doi: 10.1016/j.ifacol.2016.03.049
    [8] MAUROVIĆ I, SEDER M, LENAC K, et al. Path planning for active SLAM based on the D* algorithm with negative edge weights[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48(8): 1321–1331. doi: 10.1109/TSMC.2017.2668603
    [9] RUZ J J, AREVALO O, DE LA CRUZ J M, et al. Using MILP for UAVs trajectory optimization under radar detection risk[C]. 2006 IEEE Conference on Emerging Technologies and Factory Automation, Prague, Czech Republic, 2006: 957–960.
    [10] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1): 47–55. doi: 10.1016/j.ast.2011.02.006
    [11] PHUNG M D and HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J]. Applied Soft Computing, 2021, 107: 107376. doi: 10.1016/j.asoc.2021.107376
    [12] KONATOWSKI S. Application of the ACO algorithm for UAV path planning[J]. Przeglad Elektrotechniczny, 2019, 1(7): 117–121. doi: 10.15199/48.2019.07.24
    [13] 周彬, 郭艳, 李宁, 等. 基于导向强化Q学习的无人机路径规划[J]. 航空学报, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109

    ZHOU Bin, GUO Yan, LI Ning, et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109
    [14] XU Liang and NIU Ruixin. Tracking visual object as an extended target[C]. 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, USA, 2021: 664–668.
    [15] 陈辉, 杜金瑞, 韩崇昭. 基于星凸形随机超曲面模型多扩展目标多伯努利滤波器[J]. 自动化学报, 2020, 46(5): 909–922. doi: 10.16383/j.aas.c180130

    CHEN Hui, DU Jinrui, and HAN Chongzhao. A multiple extended target multi-bernouli filter based on star-convex random hypersurface model[J]. Acta Automatica Sinica, 2020, 46(5): 909–922. doi: 10.16383/j.aas.c180130
    [16] KHALKHALI M B, VAHEDIAN A, and YAZDI H S. Multi-target state estimation using interactive Kalman filter for multi-vehicle tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1131–1144. doi: 10.1109/TITS.2019.2902664
    [17] KIM D Y, VO B N, VO B T, et al. A labeled random finite set online multi-object tracker for video data[J]. Pattern Recognition, 2019, 90: 377–389. doi: 10.1016/j.patcog.2019.02.004
    [18] MAHLER R P S. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Boston, USA: Artech House, 2014: 825–860.
    [19] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston, USA: Artech House, 2007: 655–667.
    [20] 杨威, 付耀文, 龙建乾, 等. 基于有限集统计学理论的目标跟踪技术研究综述[J]. 电子学报, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025

    YANG Wei, FU Yaowen, LONG Jianqian, et al. The FISST-based target tracking techniques: A survey[J]. Acta Electronica Sinica, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025
    [21] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [22] VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884
    [23] VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [24] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [25] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [26] VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [27] REUTER S, VO B T, VO B N, et al. The labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064
    [28] BAUM M and HANEBECK U D. Random hypersurface models for extended object tracking[C]. 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 2009: 178–183.
    [29] THORMANN K, BAUM M, and HONER J. Extended target tracking using Gaussian processes with high-resolution automotive radar[C]. 2018 21st International Conference on Information Fusion (FUSION), Cambridge, United Kingdom, 2018: 1764–1770.
    [30] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362
    [31] FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/TSP.2010.2101064
    [32] 张银燕, 李弼程. 基于MIN-MAX云重心推理的目标威胁评估方法[J]. 系统仿真学报, 2014, 26(2): 411–418. doi: 10.16182/j.cnki.joss.2014.02.041

    ZHANG Yinyan and LI Bicheng. Method of target threat assessment based on cloudy MIN-MAX center of gravity reasoning[J]. Journal of System Simulation, 2014, 26(2): 411–418. doi: 10.16182/j.cnki.joss.2014.02.041
    [33] 李特, 冯琦, 张堃. 基于熵权灰色关联和D-S证据理论的威胁评估[J]. 计算机应用研究, 2013, 30(2): 380–382. doi: 10.3969/j.issn.1001-3695.2013.02.016

    LI Te, FENG Qi, and ZHANG Kun. Threat assessment based on entropy weight grey incidence and D-S theory of evidence[J]. Application Research of Computers, 2013, 30(2): 380–382. doi: 10.3969/j.issn.1001-3695.2013.02.016
    [34] 高晓光, 李青原, 邸若海. 基于DBN威胁评估的MPC无人机三维动态路径规划[J]. 系统工程与电子技术, 2014, 36(11): 2199–2205. doi: 10.3969/j.issn.1001-506X.2014.11.14

    GAO Xiaoguang, LI Qingyuan, and DI Ruohai. MPC three-dimensional dynamic path planning for UAV based on DBN threat assessment[J]. Systems Engineering and Electronics, 2014, 36(11): 2199–2205. doi: 10.3969/j.issn.1001-506X.2014.11.14
    [35] 张堃, 王雪, 张才坤, 等. 基于IFE动态直觉模糊法的空战目标威胁评估[J]. 系统工程与电子技术, 2014, 36(4): 697–701. doi: 10.3969/j.issn.1001-506X.2014.04.15

    ZHANG Kun, WANG Xue, ZHANG Caikun, et al. Evaluating and sequencing of air target threat based on IFE and dynamic intuitionistic fuzzy sets[J]. Systems Engineering and Electronics, 2014, 36(4): 697–701. doi: 10.3969/j.issn.1001-506X.2014.04.15
    [36] GAO Yang, LI Dongsheng, and ZHONG Hua. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103276. doi: 10.1016/j.engappai.2019.103276
    [37] WANG Yi, LIU Sanyang, NIU Wei, et al. Threat assessment method based on intuitionistic fuzzy similarity measurement reasoning with orientation[J]. China Communications, 2014, 11(6): 119–128. doi: 10.1109/CC.2014.6879010
    [38] 王小艺, 刘载文, 侯朝桢, 等. 基于模糊多属性决策的目标威胁估计方法[J]. 控制与决策, 2007, 22(8): 859–863. doi: 10.3321/j.issn:1001-0920.2007.08.004

    WANG Xiaoyi, LIU Zaiwen, HOU Chaozhen, et al. Method of object threat assessment based on fuzzy MADM[J]. Control and Decision, 2007, 22(8): 859–863. doi: 10.3321/j.issn:1001-0920.2007.08.004
    [39] GRANSTRÖM K, FATEMI M, and SVENSSON L. Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli filter for extended target tracking[C]. 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 2016: 893–900.
    [40] 连峰, 马冬冬, 元向辉, 等. 扩展目标CBMeMBer滤波器及其高斯混合实现[J]. 控制与决策, 2015, 30(4): 611–616. doi: 10.13195/j.kzyjc.2014.0286

    LIAN Feng, MA Dongdong, YUAN Xianghui, et al. CBMeMBer filter for extended targets and its Gaussian mixture implementations[J]. Control and Decision, 2015, 30(4): 611–616. doi: 10.13195/j.kzyjc.2014.0286
    [41] GOSTAR A K, HOSEINNEZHAD R, BAB-HADIASHAR A, et al. Sensor-management for multitarget filters via minimization of posterior dispersion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2877–2884. doi: 10.1109/TAES.2017.2718280
    [42] RAHMATHULLAH A S, GARCÍA-FERNÁNDEZ Á F, and SVENSSON L. Generalized optimal sub-pattern assignment metric[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–8.
    [43] LUNDQUIST C, GRANSTRÖM K, and ORGUNER U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472–483. doi: 10.1109/JSTSP.2013.2245632
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  1308
  • HTML全文浏览量:  503
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2023-06-28

目录

    /

    返回文章
    返回