基于差分特征的间歇采样转发干扰辨识与抑制方法

盖季妤 姜维 张凯翔 梁振楠 陈新亮 刘泉华

盖季妤, 姜维, 张凯翔, 等. 基于差分特征的间歇采样转发干扰辨识与抑制方法[J]. 雷达学报, 2023, 12(1): 186–196. doi: 10.12000/JR22058
引用本文: 盖季妤, 姜维, 张凯翔, 等. 基于差分特征的间歇采样转发干扰辨识与抑制方法[J]. 雷达学报, 2023, 12(1): 186–196. doi: 10.12000/JR22058
GAI Jiyu, JIANG Wei, ZHANG Kaixiang, et al. A method for interrupted-sampling repeater jamming identification and suppression based on differential features[J]. Journal of Radars, 2023, 12(1): 186–196. doi: 10.12000/JR22058
Citation: GAI Jiyu, JIANG Wei, ZHANG Kaixiang, et al. A method for interrupted-sampling repeater jamming identification and suppression based on differential features[J]. Journal of Radars, 2023, 12(1): 186–196. doi: 10.12000/JR22058

基于差分特征的间歇采样转发干扰辨识与抑制方法

DOI: 10.12000/JR22058
基金项目: 国家自然科学基金(61771050),电子信息控制重点实验室开放基金(6142105190313),重庆市自然科学基金(2020ZX3100039)
详细信息
    作者简介:

    盖季妤,硕士生,主要研究方向为干扰辨识与抑制、自适应阵列信号处理、扩展目标检测

    姜 维,博士,高级工程师,主要研究方向为阵列信号处理、雷达信号处理

    张凯翔,博士生,主要研究方向为分布式阵列雷达抗干扰

    梁振楠,博士,主要研究方向为数字阵列雷达系统和宽带雷达信号处理

    陈新亮,博士,硕士生导师,主要研究方向为自适应阵列信号处理、双/多基地合成孔径雷达成像

    刘泉华,博士,教授,博士生导师,主要研究方向为高分辨雷达、分布式雷达系统及信号处理

    通讯作者:

    陈新亮 chenxinliang@bit.edu.cn

  • 责任主编:全英汇 Corresponding Editor: QUAN Yinghui
  • 中图分类号: TN974

A Method for Interrupted-Sampling Repeater Jamming Identification and Suppression Based on Differential Features

Funds: The National Natural Science Foundation of China (61771050), Science and Technology on Electronic Information Control Laboratory (6142105190313), The Natural Science Foundation of Chongqing (2020ZX3100039)
More Information
  • 摘要: 间歇采样转发式干扰机通过对其接收到的雷达发射信号进行采样、存储、处理和多次转发,在雷达接收端形成逼真的假目标干扰效果。为提升上述干扰场景下的雷达探测性能,该文提出了一种新的信号差分特征提取方法,在此基础上,利用目标回波和干扰信号在差分特征空间的差异设计判决准则,从而在有效辨识并抑制干扰的同时实现目标检测。仿真结果表明:该方法干扰抑制效果显著,相比于3种典型的时频域滤波算法等效信噪比改善4.2 dB以上。

     

  • 图  1  间歇采样转发干扰示意图

    Figure  1.  Schematic diagram of ISRJ

    图  2  目标与间歇采样转发干扰差分特征对比

    Figure  2.  Comparison of the differential features between target and ISRJ

    图  3  基于差分特征的间歇采样转发干扰辨识与抑制流程图

    Figure  3.  Flow chart of the ISRJ identification and suppression based on differential features

    图  4  不同干噪比、信噪比下,干扰、目标处差分特征能量比值的概率分布

    Figure  4.  The probability distribution of differential features energy ratio under different jamming-to-noise ratio and signal-to-noise ratio for ISRJ and target

    图  5  由最小错误概率准则确定辨识门限$\epsilon $

    Figure  5.  The determination of identification threshold $\epsilon $ by minimizing the probability of error

    图  6  仿真数据间歇采样转发干扰辨识与抑制结果

    Figure  6.  ISRJ identification and suppression results for simulation data

    图  7  目标检测概率

    Figure  7.  Target detection probability

    图  8  4种方法检测性能对比(仿真数据)

    Figure  8.  The detection performance comparison of the four methods (simulation data)

    图  9  实测数据间歇采样转发干扰辨识与抑制结果

    Figure  9.  ISRJ identification and suppression results for measured data

    图  10  时频图

    Figure  10.  Time-Frequency distribution

    表  1  归一化差分序列

    Table  1.   Normalized differential sequence

    M各项系数$ {c_M}(m),m = 0,1, \cdots ,M - 1 $
    11
    2$ 1/\sqrt{2},-1/\sqrt{2} $
    3$ 1/\sqrt{6},-2/\sqrt{6},1/\sqrt{6} $
    4$ 1/2\sqrt{5},-3/2\sqrt{5},3/2\sqrt{5},-1/2\sqrt{5} $
    5$ 1/\sqrt{70},-4/\sqrt{70},6/\sqrt{70},-4/\sqrt{70},1/\sqrt{70} $
    下载: 导出CSV

    表  2  仿真数据信源参数

    Table  2.   Source parameters for simulation data

    信源波形参数脉压后信(干)噪比
    目标脉宽100 μs,带宽5 MHz10~50 dB,间隔1 dB
    干扰1切片宽度16.67 μs,切片1次重复转发5次10~50 dB,间隔1 dB
    干扰2切片宽度10 μs,切片1次立即重复转发2次,共切片3次10~50 dB,间隔1 dB
    下载: 导出CSV

    表  3  仿真参数

    Table  3.   Simulation parameters

    参数数值
    常规检测门限13.82
    最高差分阶数6
    辨识门限1.79
    下载: 导出CSV

    表  4  不同干噪比下,检测概率为95%时所需的信噪比

    Table  4.   When the detection probability is 95%, the required signal-to-noise ratios under different jamming-to-noise ratios

    干噪比(dB)所需信噪比(dB)
    无干扰15.5
    1017.9
    2017.4
    3021.4
    4029.5
    5038.5
    下载: 导出CSV

    表  5  实测数据信源参数

    Table  5.   Source parameters for measured data

    目标参数数值干扰参数数值
    脉宽(μs)20脉宽(μs)10
    带宽(MHz)2带宽(MHz)1
    脉压后信噪比(dB)33脉压后信噪比(dB)45
    下载: 导出CSV
  • [1] 王雪松, 刘建成, 张文明,等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series E:Information Sciences, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007
    [2] 刘忠, 王雪松, 刘建成, 等. 基于数字射频存储器的间歇采样重复转发干扰[J]. 兵工学报, 2008, 29(4): 405–410. doi: 10.3321/j.issn:1000-1093.2008.04.005

    LIU Zhong, WANG Xuesong, LIU Jiancheng, et al. Jamming technique of interrupted-sampling and periodic repeater based on digital radio frequency memory[J]. Acta Armamentarii, 2008, 29(4): 405–410. doi: 10.3321/j.issn:1000-1093.2008.04.005
    [3] GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi: 10.1109/TSP.2007.909326
    [4] 李宏, 郑光勇, 杨英科, 等. 部分截取雷达信号多假目标干扰性能分析[J]. 电子信息对抗技术, 2010, 25(3): 39–44. doi: 10.3969/j.issn.1674-2230.2010.03.010

    LI Hong, ZHENG Guangyong, YANG Yingke, et al. The performance analysis of multi-false targets jamming of part copying radar pulse[J]. Electronic Information Warfare Technology, 2010, 25(3): 39–44. doi: 10.3969/j.issn.1674-2230.2010.03.010
    [5] ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1300. doi: 10.1109/TAES.2013.6494414
    [6] 李宏, 牟能文, 郭雷. 相参干扰的压制距离[J]. 电子信息对抗技术, 2015, 30(4): 33–36. doi: 10.3969/j.issn.1674-2230.2015.04.008

    LI Hong, MOU Nengwen, and GUO Lei. Depressing distance of coherent jamming[J]. Electronic Information Warfare Technology, 2015, 30(4): 33–36. doi: 10.3969/j.issn.1674-2230.2015.04.008
    [7] 施富强, 周超, 刘泉华. 间歇采样重复转发式干扰特性分析[J]. 信号处理, 2017, 33(12): 1616–1624. doi: 10.16798/j.issn.1003-0530.2017.12.013

    SHI Fuqiang, ZHOU Chao, and LIU Quanhua. Characteristics analysis of interrupted-sampling repeater jamming[J]. Journal of Signal Processing, 2017, 33(12): 1616–1624. doi: 10.16798/j.issn.1003-0530.2017.12.013
    [8] FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958
    [9] CHEN Fengbo, LI Rongfeng, DING Liming, et al. A method against DRFM dense false target jamming based on jamming recognization[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4.
    [10] 陈静, 李晗, 张洪纲, 等. 分布式雷达主瓣间歇采样转发干扰抑制方法[J]. 信号处理, 2018, 34(11): 1368–1376. doi: 10.16798/j.issn.1003-0530.2018.11.013

    CHEN Jing, LI Han, ZHANG Honggang, et al. Main-lobe interrupted sampling repeater jamming suppression method in distributed radar[J]. Journal of Signal Processing, 2018, 34(11): 1368–1376. doi: 10.16798/j.issn.1003-0530.2018.11.013
    [11] 周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06
    [12] ZHANG Jiaxiang and ZHOU Chao. Interrupted sampling repeater jamming suppression method based on hybrid modulated radar signal[C]. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 2019: 1–4.
    [13] 周畅, 汤子跃, 朱振波, 等. 抗间歇采样转发干扰的波形设计方法[J]. 电子与信息学报, 2018, 40(9): 2198–2205. doi: 10.11999/JEIT171236

    ZHOU Chang, TANG Ziyue, ZHU Zhenbo, et al. Anti-interrupted sampling repeater jamming waveform design method[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2198–2205. doi: 10.11999/JEIT171236
    [14] ZHANG Yang, WEI Yinsheng, and YU Lei. Interrupted sampling repeater jamming recognition and suppression based on phase-coded signal processing[J]. Signal Processing, 2022, 198: 108596. doi: 10.1016/j.sigpro.2022.108596
    [15] ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27: 1610–1614. doi: 10.1109/LSP.2020.3021667
    [16] TIAN Dezhi, REN Wei, ZHANG Lu, et al. An adaptive scheme for chopping and interleaving jamming suppression based on the mismatched filter[C]. 2021 International Conference on Control, Automation and Information Sciences (ICCAIS), Xi’an, China, 2021: 78–83.
    [17] ZHOU Kai, LI Dexin, QUAN Sinong, et al. SAR Waveform and mismatched filter design for countering interrupted-sampling repeater jamming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214514. doi: 10.1109/TGRS.2021.3107328
    [18] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    [19] GONG Shixian, WEI Xizhang, and LI Xiang. ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 996–1003. doi: 10.1109/JSEE.2014.00114
    [20] CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658
    [21] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080
    [22] KAY S M. Fundamentals of Statistical Signal Processing: Detection Theory Volume II[M]. Englewood: Prentice-Hall, Inc., 1998: 77–79.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  2049
  • HTML全文浏览量:  1034
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回