GEO-LEO双基SAR序贯多帧-多通道联合重建无模糊成像方法

安洪阳 孙稚超 王朝栋 武俊杰 杨建宇

安洪阳, 孙稚超, 王朝栋, 等. GEO-LEO双基SAR序贯多帧-多通道联合重建无模糊成像方法[J]. 雷达学报, 2022, 11(3): 376–385. doi: 10.12000/JR21133
引用本文: 安洪阳, 孙稚超, 王朝栋, 等. GEO-LEO双基SAR序贯多帧-多通道联合重建无模糊成像方法[J]. 雷达学报, 2022, 11(3): 376–385. doi: 10.12000/JR21133
AN Hongyang, SUN Zhichao, WANG Chaodong, et al. Unambiguous imaging method for GEO-LEO bistatic SAR based on joint sequential multiframe and multichannel receiving recovery[J]. Journal of Radars, 2022, 11(3): 376–385. doi: 10.12000/JR21133
Citation: AN Hongyang, SUN Zhichao, WANG Chaodong, et al. Unambiguous imaging method for GEO-LEO bistatic SAR based on joint sequential multiframe and multichannel receiving recovery[J]. Journal of Radars, 2022, 11(3): 376–385. doi: 10.12000/JR21133

GEO-LEO双基SAR序贯多帧-多通道联合重建无模糊成像方法

DOI: 10.12000/JR21133
基金项目: 国家自然科学基金(61922023, 61901088, 61771113, 61801099),博士后科学基金(2021M690557, 2019M65338),博士后创新人才支持计划(BX2021058)
详细信息
    作者简介:

    安洪阳(1993–),男,四川人,博士,博士后,主要研究方向为双基合成孔径雷达成像

    孙稚超(1989–),男,河南人,博士,博士后,主要研究方向为双基合成孔径雷达成像、进化优化方法

    王朝栋(1997–),男,安徽人,博士生,主要研究方向为合成孔径雷达成像

    武俊杰(1982–),男,河北人,博士,教授,主要研究方向为前视SAR成像与动目标检测技术

    杨建宇(1963–),男,四川人,博士,教授,主要研究方向为新体制雷达探测与成像技术

    通讯作者:

    武俊杰 junjie_wu@uestc.edu.cn

  • 责任主编:李宁 Corresponding Editor: LI Ning
  • 中图分类号: TN957

Unambiguous Imaging Method for GEO-LEO Bistatic SAR Based on Joint Sequential Multiframe and Multichannel Receiving Recovery

Funds: The National Natural Science Foundation of China (61922023, 61901088, 61771113, 61801099), The China Postdoctoral Science Foundation (2021M690557, 2019M65338), The Postdoctoral Innovation Talent Support Program (BX2021058)
More Information
  • 摘要: 采用地球同步轨道(GEO)卫星作为双基合成孔径雷达(SAR)的发射站,可为低轨(LEO)接收站提供大范围、持续的波束覆盖。同时,由于收发分置的系统形态,LEO接收站可以实现下视、前视、后视等多视区成像,因此,GEO-LEO双基SAR在地球测绘、侦察监视等领域具有广阔的应用前景。为实现大幅宽成像,GEO SAR发射站的脉冲重复频率较低,而LEO SAR接收站会引入大的多普勒带宽,造成GEO-LEO双基SAR方位欠采样。通过在接收站引入多通道技术虽可抑制模糊,但是面临GEO-LEO双基SAR的严重欠采样问题,多通道无模糊重建方法所需通道数过多,不利于接收系统小型化。针对方位严重欠采样条件下的复杂观测场景无模糊成像问题,该文提出了序贯多帧-多接收通道联合重建无模糊成像方法,通过利用序贯观测场景多帧图像的相关性和多接收通道的采样信息进行联合重建,实现无模糊成像。首先将GEO-LEO双基SAR无模糊成像问题建模为张量联合低秩与稀疏优化问题,然后在交替方向乘子法迭代求解中利用多接收通道信息,实现了GEO-LEO双基SAR对复杂观测场景的无模糊成像。相比于基于传统多通道重构的成像方法,该方法可显著减少无模糊成像所需的接收通道数,仿真实验验证了该方法的有效性。

     

  • 图  1  GEO-LEO双基SAR观测几何示意图

    Figure  1.  The observation geometry of GEO-LEO bistatic SAR

    图  2  GEO-LEO双基SAR欠采样特性

    Figure  2.  The undersampling characteristics of GEO-LEO bistatic SAR

    图  3  序贯多帧观测几何示意图

    Figure  3.  The observation geometry of sequential multiframe

    图  4  多帧多通道联合重建成像方法流程

    Figure  4.  The flow of joint multiframe and multichannel recovery imaging method

    图  5  扩展目标场景1不同方法成像结果

    Figure  5.  Distributed scene 1 imaging results of different methods

    图  6  扩展目标场景1本文方法成像结果

    Figure  6.  Distributed scene 1 imaging results of the method proposed in this paper

    图  7  扩展目标场景2不同方法成像结果

    Figure  7.  Distributed scene 2 imaging results of different methods

    表  1  仿真系统参数

    Table  1.   Simulation system parameters

    参数数值参数数值
    载频1.25 GHz信号带宽100 MHz
    接收天线尺寸5 m合成孔径时间5 s
    下载: 导出CSV

    表  2  仿真轨道参数

    Table  2.   Simulated orbit parameters

    参数GEO SAR数值LEO SAR数值
    半长轴42164.17 km6884 km
    离心率0.010
    轨道倾角53°97.03°
    近地点幅角270°270°
    入射角20.38°58.53°
    斜视角16.5°61.5°
    下载: 导出CSV

    表  3  不同方法的重建性能

    Table  3.   Reconstruction performance of different methods

    目标场景 单通道稀疏重建方法多通道稀疏重建方法单帧多通道联合低秩与稀疏方法5帧多通道联合重建10帧多通道联合重建
    扩展目标场景110.37 dB14.06 dB20.06 dB22.92 dB26.98 dB
    扩展目标场景29.17 dB12.31 dB18.19 dB21.25 dB26.62 dB
    下载: 导出CSV
  • [1] TOMIYASU K and PACELLI J L. Synthetic aperture radar imaging from an inclined geosynchronous orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 1983, GE-21(3): 324–329. doi: 10.1109/TGRS.1983.350561
    [2] MADSEN S N, EDELSTEIN W, DIDOMENICO L D, et al. A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium on Scanning the Present and Resolving the Future, Sydney, Australia, 2001: 447–449.
    [3] 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099
    [4] 邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102

    XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102
    [5] 孙稚超. 基于GEO辐射源的星机SAR成像理论与方法研究[D]. [博士论文], 电子科技大学, 2017.

    SUN Zhichao. Research on the imaging theory and algorithms of geosynchronous Spaceborne-Airborne Bistatic SAR[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2017.
    [6] 安洪阳. 基于高轨照射源的双基SAR成像与动目标检测技术研究[D]. [博士论文], 电子科技大学, 2020.

    AN Hongyang. Research on imaging and moving target detection technology of bistatic SAR with geosynchronous illuminator[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2020.
    [7] GUTTRICH G L, SIEVERS W E, and TOMLJANOVICH N M. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 126–131 .
    [8] LU Zheng, WANG Yuekun, XU Mingming, et al. Spacecraft formation design for bistatic SAR with GEO illuminator and LEO receiver[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4451–4454.
    [9] WANG Jingen, WANG Yanfei, GE Jialong, et al. Ambiguous scattering point detection of bistatic downward-looking SAR with geostationary illuminator and LEO receiver[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 571–574.
    [10] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [11] DING Zegang, SHU Bozheng, YIN Wei, et al. A modified frequency domain algorithm based on optimal azimuth quadratic factor compensation for geosynchronous SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1119–1131. doi: 10.1109/JSTARS.2015.2497000
    [12] ZHANG Shuangxi, LI Shaojie, LIU Yanyang, et al. A novel azimuth Doppler signal reconstruction approach for the GEO-LEO bi-static multi-channel HRWS SAR system[J]. IEEE Access, 2019, 7: 39539–39546. doi: 10.1109/ACCESS.2019.2904653
    [13] WANG Yuekun, LIU Yanyang, LI Zhenfang, et al. High-resolution wide-swath imaging of spaceborne multichannel bistatic SAR with inclined geosynchronous illuminator[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2380–2384. doi: 10.1109/LGRS.2017.2765675
    [14] AN Hongyang, WU Junjie, TEH K C, et al. Nonambiguous image formation for low-earth-orbit SAR with geosynchronous illumination based on multireceiving and CAMP[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 348–362. doi: 10.1109/TGRS.2020.2992744
    [15] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [16] RECHT B, FAZEL M, and PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471–501. doi: 10.1137/070697835
    [17] PU Wei and WU Junjie. OSRanP: A novel way for radar imaging utilizing joint sparsity and low-rankness[J]. IEEE Transactions on Computational Imaging, 2020, 6: 868–882. doi: 10.1109/TCI.2020.2993170
    [18] WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840
    [19] BI Hui, BI Guoan, ZHANG Bingchen, et al. From theory to application: Real-time sparse SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2928–2936. doi: 10.1109/TGRS.2019.2958067
    [20] AN Hongyang, WU Junjie, TEH K C, et al. Geosynchronous spaceborne-airborne bistatic SAR imaging based on fast low-rank and sparse matrices recovery[J]. IEEE Transactions on Geoscience and Remote Sensing. doi: 10.1109/TGRS.2021.3081099.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1694
  • HTML全文浏览量:  965
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2021-11-10
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回