一种基于多维交替方向乘子法的多输入多输出逆合成孔径雷达成像方法

邓理康 张双辉 张弛 刘永祥

邓理康, 张双辉, 张弛, 等. 一种基于多维交替方向乘子法的多输入多输出逆合成孔径雷达成像方法[J]. 雷达学报, 2021, 10(3): 416–431. doi: 10.12000/JR20132
引用本文: 邓理康, 张双辉, 张弛, 等. 一种基于多维交替方向乘子法的多输入多输出逆合成孔径雷达成像方法[J]. 雷达学报, 2021, 10(3): 416–431. doi: 10.12000/JR20132
DENG Likang, ZHANG Shuanghui, ZHANG Chi, et al. A multiple-input multiple-output inverse synthetic aperture radar imaging method based on multidimensional alternating direction method of multipliers[J]. Journal of Radars, 2021, 10(3): 416–431. doi: 10.12000/JR20132
Citation: DENG Likang, ZHANG Shuanghui, ZHANG Chi, et al. A multiple-input multiple-output inverse synthetic aperture radar imaging method based on multidimensional alternating direction method of multipliers[J]. Journal of Radars, 2021, 10(3): 416–431. doi: 10.12000/JR20132

一种基于多维交替方向乘子法的多输入多输出逆合成孔径雷达成像方法

DOI: 10.12000/JR20132
基金项目: 国家自然科学基金(61801484, 61921001)
详细信息
    作者简介:

    邓理康(1991–),男,福建建阳人,国防科技大学电子科学学院在读研究生,研究方向为双站雷达成像、MIMO雷达成像

    张双辉(1989–),男,湖南长沙人,博士,国防科技大学电子科学学院副研究员,研究方向为雷达成像、压缩感知、贝叶斯推断

    张 弛(1994–),男,湖北孝感人,国防科技大学电子科学学院在读博士生,研究方向为雷达成像、压缩感知、贝叶斯学习

    刘永祥(1976–),男,河北唐山人,博士,国防科技大学电子科学学院教授,博士生导师,研究方向为目标微动特性分析与识别

    通讯作者:

    张双辉 shzhang3@126.com

  • 责任主编:张弓 Corresponding Editor: ZHANG Gong
  • 中图分类号: TN957.51

A Multiple-Input Multiple-Output Inverse Synthetic Aperture Radar Imaging Method Based on Multidimensional Alternating Direction Method of Multipliers

Funds: The National Natural Science Foundation of China (61801484, 61921001)
More Information
  • 摘要: 基于傅里叶变换的传统逆合成孔径雷达(ISAR)成像方法存在数据存储量大、数据采集时间长的问题。压缩感知(CS)理论利用图像的稀疏性,可以利用有限的数据恢复图像,这极大降低了数据采集成本。但对于多维数据,传统压缩感知方法要将多维数据转化成一维向量,这造成了很大存储和计算负担。因此,该文提出一种基于多维度-交替方向乘子法(MD-ADMM)的多输入多输出-逆合成孔径雷达(MIMO-ISAR)成像快速稀疏重建方法。首先建立基于张量信号的压缩感知模型,然后用ADMM算法对模型进行优化,将测量矩阵分解为张量模态积,用张量元素除法替代矩阵求逆,显著减少所需的内存和计算负担。该方法只需少量的数据采样,就能实现快速成像。与其他基于张量的压缩感知方法相比,该方法具有鲁棒性强、图像质量好、计算效率高的优点。仿真和实测数据验证了该方法的有效性。

     

  • 图  1  成像场景图

    Figure  1.  Geometry of imaging

    图  2  线性收发阵元的等效收发阵元示意图

    Figure  2.  The equivalent transceiver array element for linear receiving and transmitting array elements

    图  3  目标移动示意图

    Figure  3.  Motion of the target

    图  4  仿真目标三维散点图

    Figure  4.  3D scatter of simulation target

    图  5  完整回波数据图像三视图

    Figure  5.  Three views of image with the complete echo

    图  6  回波采样形式

    Figure  6.  Undersampling masks of random sampling and block sampling

    图  7  稀疏度为50.0%时图像

    Figure  7.  Image when sparsity is 50.0%

    图  8  稀疏度为33.3%时的图像

    Figure  8.  Image when sparsity is 33.3%

    图  9  稀疏度为25.0%时的图像

    Figure  9.  Image when sparsity is 25.0%

    图  10  稀疏度为50.0%的块稀疏采样图像

    Figure  10.  The image of a sparsity of 50.0% by block sampling

    图  11  稀疏度为25.0%信噪比为–5 dB的图像

    Figure  11.  The image when sparsity is 25.0% and SNR=–5 dB

    图  12  稀疏度为25.0%信噪比为0 dB图像

    Figure  12.  The image when sparsity is 25.0% and SNR=0 dB

    图  13  稀疏度为25.0%信噪比为10 dB的图像

    Figure  13.  The image when sparsity is 25.0% and SNR=10 dB

    图  14  实测数据结果

    Figure  14.  Measured ISAR data results

    图  15  信噪比为0 dB实测数据结果

    Figure  15.  Measured ISAR data results under SNR=0 dB

    表  1  随机稀疏采样条件下数值结果

    Table  1.   Numerical results under random sparse sampling condition

    稀疏度算法图像熵PSNR计算时间
    50.0%RD9.49034.0750.012
    DR-2D-SL03.13857.71435.053
    MD-SL03.13857.7146.954
    MD-ADMM3.00661.6783.518
    33.3%RD10.50528.4300.010
    DR-2D-SL03.20052.70229.091
    MD-SL03.20052.70212.546
    MD-ADMM2.95953.8886.088
    25.0%RD10.96526.0030.0131
    DR-2D-SL03.37348.75554.008
    MD-SL03.37348.75528.509
    MD-ADMM3.02349.38611.996
    下载: 导出CSV

    表  2  块稀疏采样条件下数值结果

    Table  2.   Numerical results under block sparse sampling condition

    稀疏度算法图像熵PSNR计算时间
    50.0%RD8.33632.8850.012
    DR-2D-SL03.24651.23241.907
    MD-SL03.24651.2328.029
    MD-ADMM3.03753.2743.660
    33.3%RD8.55327.4950.0098
    DR-2D-SL03.70042.18842.518
    MD-SL03.70042.18817.954
    MD-ADMM3.23342.3365.758
    25.0%RD9.50026.9060.0092
    DR-2D-SL03.89445.19651.463
    MD-SL03.89445.19625.702
    MD-ADMM3.33747.20111.536
    下载: 导出CSV

    表  3  不同信噪比条件下数值结果

    Table  3.   Numerical results under different SNR conditions

    信噪比算法图像熵PSNR计算时间
    –5 dBRD11.804218.3200.0177
    DR-2D-SL07.321837.63949.998
    MD-SL07.321837.63923.540
    MD-ADMM4.77943.35210.775
    0 dBRD11.53523.4520.013
    DR-2D-SL05.408643.28548.776
    MD-SL05.408643.28523.303
    MD-ADMM2.97747.44910.715
    10 dBRD11.11627.1450.0124
    DR-2D-SL03.94845.61948.754
    MD-SL03.94845.61923.484
    MD-ADMM3.06647.56110.521
    下载: 导出CSV

    表  4  实测数据不同信噪比条件下的数值结果

    Table  4.   Numerical results of measured data for different signal-to-noise ratio conditions

    信噪比算法图像熵PSNR计算时间
    原始数据RD9.63929.8160.010
    MD-SL06.45940.37810.553
    MD-ADMM5.29641.3643.743
    0 dBRD10.24226.9090.0131
    MD-SL07.57135.24112.064
    MD-ADMM6.18339.0904.274
    下载: 导出CSV
  • [1] MUSMAN S, KERR D, and BACHMANN C. Automatic recognition of ISAR ship images[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(4): 1392–1404. doi: 10.1109/7.543860
    [2] MARTORELLA M, GIUSTI E, DEMI L, et al. Target recognition by means of polarimetric ISAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 225–239. doi: 10.1109/TAES.2011.5705672
    [3] BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 128–133.
    [4] DUAN Guangqing, WANG Dangwei, MA Xiaoyan, et al. Three-dimensional imaging via wideband MIMO radar system[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 445–449. doi: 10.1109/LGRS.2009.2038728
    [5] HU Xiaowei, TONG Ningning, WANG Heming, et al. Multiple-input-multiple-output radar superresolution three-dimensional imaging based on multidimensional smoothed L0[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035017. doi: 10.1117/1.JRS.10.035017
    [6] WANG Yong and LI Xuelu. 3-D imaging based on combination of the ISAR technique and a MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6033–6054. doi: 0.1109/TGRS.2018.2829912
    [7] CANDES E J and WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30. doi: 10.1109/MSP.2007.914731
    [8] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [9] DUARTE M F and BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494–504. doi: 10.1109/TIP.2011.2165289
    [10] QIU Wei, MARTORELLA M, ZHOU Jianxiong, et al. Three-dimensional inverse synthetic aperture radar imaging based on compressive sensing[J]. IET Radar, Sonar & Navigation, 2015, 9(4): 411–420.
    [11] HU Xiaowei, TONG Ningning, GUO Yiduo, et al. MIMO radar 3-D imaging based on multi-dimensional sparse recovery and signal support prior information[J]. IEEE Sensors Journal, 2018, 18(8): 3152–3162. doi: 10.1109/JSEN.2018.2810705
    [12] QIU Wei, ZHOU Jianxiong, ZHAO Hongzhong, et al. Three-dimensional sparse turntable microwave imaging based on compressive sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4): 826–830. doi: 10.1109/LGRS.2014.2363238
    [13] ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Computationally efficient sparse aperture ISAR autofocusing and imaging based on fast ADMM[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8751–8765. doi: 10.1109/TGRS.2020.2990445
    [14] ZHU Yutao, SU Yi, and YU Wenxian. An ISAR imaging method based on MIMO technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3290–3299. doi: 10.1109/TGRS.2010.2045230
    [15] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  727
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2021-01-27
  • 网络出版日期:  2021-02-08
  • 刊出日期:  2021-06-28

目录

    /

    返回文章
    返回