基于卷积神经网络的SAR图像目标识别研究

田壮壮 占荣辉 胡杰民 张军

田壮壮, 占荣辉, 胡杰民, 张军. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320-325. doi: 10.12000/JR16037
引用本文: 田壮壮, 占荣辉, 胡杰民, 张军. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320-325. doi: 10.12000/JR16037
Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037
Citation: Tian Zhuangzhuang, Zhan Ronghui, Hu Jiemin, Zhang Jun. SAR ATR Based on Convolutional Neural Network[J]. Journal of Radars, 2016, 5(3): 320-325. doi: 10.12000/JR16037

基于卷积神经网络的SAR图像目标识别研究

DOI: 10.12000/JR16037
基金项目: 

国家自然科学基金(61471370)

详细信息
    作者简介:

    田壮壮(1993-),男,硕士生,研究方向为雷达目标识别。E-mail:tzz14@nudt.edu.cn;占荣辉(1978-),男,讲师,博士,研究方向为雷达目标识别、雷达信息处理;胡杰民(1983-),男,讲师,博士,研究方向为空间目标识别、雷达成像;张军(1973-),男,研究员,博士,研究方向为雷达智能信号处理、制导雷达应用技术。

    通讯作者:

    田壮壮tzz14@nudt.edu.cn

SAR ATR Based on Convolutional Neural Network

Funds: 

The National Natural Science Foundation of China (61471370)

  • 摘要: 针对合成孔径雷达(Synthetic Aperture Radar, SAR)的图像目标识别应用, 该文提出了一种基于卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标识别方法。首先通过在误差代价函数中引入类别可分性度量, 提高了卷积神经网络的类别区分能力;然后利用改进后的卷积神经网络对SAR图像进行特征提取;最后利用支持向量机(Support Vector Machine, SVM)对特征进行分类。使用美国运动和静止目标获取与识别(Moving and Stationary Target Acquisition and Recognition, MSTAR)SAR图像数据进行实验, 识别结果证明了所提方法的有效性。

     

  • [1] Ross T D, Worrell S W, Velten V J, et al.. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]. Aerospace/Defense Sensing and Controls, International Society for Optics and Photonics, 1998: 566-573.
    [2] Tao W, Xi C, Xiangwei R, et al.. Study on SAR target recognition based on support vector machine[C]. 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009: 856-859.
    [3] 王璐, 张帆, 李伟, 等. 基于 Gabor 滤波器和局部纹理特征提取的 SAR 目标识别算法[J]. 雷达学报, 2015, 4(6): 658-665. DOI: 10.12000/JR15076. Wang Lu, Zhang Fan, Li Wei, et al.. A method of SAR target recognition based on Gabor filter and local texture feature extraction[J]. Journal of Radars, 2015, 4(6); 658-665. DOI: 10.12000/JR15076.
    [4] 齐会娇, 王英华, 丁军, 等. 基于多信息字典学习及稀疏表示的SAR目标识别[J]. 系统工程与电子技术, 2015, 37(6): 1280-1287. Qi Huijiao, Wang Yinghua, Ding Jun, et al.. SAR target recognition based on multi-information dictionary learning and sparse representation[J]. Systems Engineering and Electronics, 2015, 37(6): 1280-1287.
    [5] Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    [6] Hinton G E, Osindero S, and Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
    [7] Vincent P, Larochelle H, Lajoie I, et al.. Stacked denoisingautoencoders: learning useful representations in a deep network with a local denoisingcriterion[J]. The Journal of Machine Learning Research, 2010, 11: 3371-3408.
    [8] Lecun Y, Bottou L, Bengio Y, et al.. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
    [9] Ma Y, He J, Wu L, et al.. An effective face verification algorithm to fuse complete features in convolutional neural network[C]. MultiMedia Modeling. Springer International Publishing, 2016: 39-46.
    [10] Ijjina E P and Mohan C K. Human action recognition based on motion capture information using fuzzy convolution neural networks[C]. 2015 Eighth International Conference on Advances in Pattern Recognition (ICAPR), Kalkata, 2015: 1-6.
    [11] Ciompi F, de Hoop B, van Riel S J, et al.. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box[J]. Medical Image Analysis, 2015, 26(1): 195-202.
    [12] 尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48-59. Yin Bao-cai, Wang Wen-tong, and Wang Li-chun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48-59.
    [13] Lecun Y, Bengio Y, and Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
    [14] Rumelhart D E, Hinton G E, and Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
    [15] 孙艳丰, 齐光磊, 胡永利, 等. 基于改进 Fisher 准则的深度卷积神经网络识别算法[J]. 北京工业大学学报, 2015, 41(6): 835-841. Sun Yanfeng, Qi Guanglei, Hu Yongli, et al.. Deep convolution neural network recognition algorithm based on improved fisher criterion[J]. Journal of Beijing University of Technology, 2015, 41(6): 835-841.
    [16] Cortes C and Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [17] 孙即祥, 等. 现代模式识别[M]. 北京: 高等教育出版社, 2008: 624-625. Sun Jixiang, et al.. Pattern Recognition[M]. Beijing: Higher Education Press, 2008: 624-625.
    [18] Glorot X and Bengio Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010, 9: 249-256.
  • 加载中
计量
  • 文章访问数:  6753
  • HTML全文浏览量:  1963
  • PDF下载量:  3116
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-03
  • 修回日期:  2016-03-15
  • 网络出版日期:  2016-06-28

目录

    /

    返回文章
    返回