基于RM核算子学习驱动的非视距毫米波雷达三维成像方法

陈锟 韦顺军 蔡响 王谋 张浩 崔国龙 张晓玲 陈思远

陈锟, 韦顺军, 蔡响, 等. 基于RM核算子学习驱动的非视距毫米波雷达三维成像方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25132
引用本文: 陈锟, 韦顺军, 蔡响, 等. 基于RM核算子学习驱动的非视距毫米波雷达三维成像方法[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25132
CHEN Kun, WEI Shunjun, CAI Xiang, et al. RM operator learning-driven non-line-of-sight 3D imaging method for millimeter wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR25132
Citation: CHEN Kun, WEI Shunjun, CAI Xiang, et al. RM operator learning-driven non-line-of-sight 3D imaging method for millimeter wave radar[J]. Journal of Radars, in press. doi: 10.12000/JR25132

基于RM核算子学习驱动的非视距毫米波雷达三维成像方法

DOI: 10.12000/JR25132 CSTR: 32380.14.JR25132
基金项目: 国家自然科学基金(62271108, 62401119),四川省自然科学基金(2025ZNSFSC0526)
详细信息
    作者简介:

    陈 锟,硕士生,主要研究方向为非视距雷达成像、雷达三维成像、雷达信号处理等

    韦顺军,博士,教授,主要研究方向为雷达三维成像、新体制SAR成像、雷达稀疏成像、雷达信号处理等

    蔡 响,硕士生,主要研究方向为非视距雷达成像、雷达三维成像、雷达信号处理等

    王 谋,博士,副教授,主要研究方向为雷达三维成像、新体制SAR成像、雷达稀疏成像、雷达信号处理等

    张 浩,博士生,主要研究方向为雷达信号处理、雷达干扰抑制、机器学习等

    崔国龙,博士,教授,主要研究方向为最优化理论和算法、雷达目标检测理论、波形多样性以及城市环境目标探测等

    张晓玲,博士,教授,主要研究方向为雷达信号处理、SAR成像系统、SAR图像智能解译等

    陈思远,硕士,工程师,主要研究方向为雷达信号处理等

    通讯作者:

    韦顺军 weishunjun@uestc.edu.cn

    责任主编:仇晓兰 Corresponding Editor: QIU Xiaolan

  • 中图分类号: TN957.52

RM Operator Learning-driven Non-line-of-sight 3D Imaging Method for Millimeter Wave Radar

Funds: The National Natural Science Foundation of China (62271108, 62401119), The Natural Science Foundation of Sichuan Province (2025ZNSFSC0526)
More Information
  • 摘要: 非视距(NLOS)毫米波雷达三维成像利用电磁波反射、衍射、散射、穿透等传播特性,实现对隐蔽环境目标的探测、定位和成像,在无人驾驶、灾害救援、城市作战等领域具有重要应用潜力。然而,受实际非视距场景中反射面、遮挡面等不确定性引入的相位误差、孔径遮蔽、多径效应影响,雷达成像出现分辨率差、伪影增多等问题。针对上述问题,结合深度展开网络和环境先验感知,本文提出了一种基于距离徙动(RM)算子学习驱动的非视距毫米波雷达三维成像方法。首先,建立了拐角(LAC)场景下非视距毫米波雷达三维成像模型,引入RM核算子提高成像效率,降低计算复杂度;其次,构建了一种基于快速迭代收缩阈值(FISTA)框架的高精度非视距三维成像网络,利用非视距场景特性,将算法参数设计为网络权重的函数,实现非视距目标高精度、高效率三维重构;最后,搭建了近场非视距毫米波雷达成像平台,完成了理想与非理想反射面场景下金属字母“O”,“S”以及埃菲尔铁塔模型、人造卫星模型等目标的实验验证,结果表明所提方法在提升三维成像精度的同时,运行速度较传统稀疏成像算法提升了两个数量级。

     

  • 图  1  非视距毫米波雷达三维成像几何模型

    Figure  1.  3D NLOS imaging geometry model for millimeter wave radar

    图  2  NLFIST-Net结构

    Figure  2.  NLFIST-Net architecture

    图  3  残差更新过程

    Figure  3.  Residual update process

    图  4  梯度下降过程

    Figure  4.  Gradient descent process

    图  5  软阈值收缩过程

    Figure  5.  Soft thresholding shrinkage procedure

    图  6  动量修正过程

    Figure  6.  Momentum correction process

    图  7  基于RM核算子学习驱动的NLOS毫米波雷达三维成像框架

    Figure  7.  RM-operator Learning-driven framework for 3D NLOS imaging via millimeter wave radar

    图  8  试验场景及实测目标

    Figure  8.  Experimental scenes and measured targets

    图  9  试验场景2D成像

    Figure  9.  2D imaging of experimental scenes

    图  10  各算法在采样率100%时各个目标在不同反射面下的非视距三维成像结果

    Figure  10.  NLOS 3D imaging results of various hidden targets under different reflective surfaces at 100% sampling rate

    图  11  不同反射面场景下,各算法在采样率为70%, 50%, 30%时字母“O”非视距三维成像结果

    Figure  11.  Under different reflective surface conditions, NLOS 3D imaging results of letter “O” by different algorithms when sampling ratio are 70%, 50% and 30%

    图  12  不同反射面场景下,各算法在采样率为70%, 50%, 30%时字母“S”非视距三维成像结果

    Figure  12.  Under different reflective surface conditions, NLOS 3D imaging results of letter “S” by different algorithms when sampling ratio are 70%, 50% and 30%

    图  13  不同反射面场景下,各算法在采样率为70%, 50%, 30%时埃菲尔铁塔模型非视距三维成像结果

    Figure  13.  Under different reflective surface conditions, NLOS 3D imaging results of the Eiffel Tower model by different algorithms when sampling ratio are 70%, 50% and 30%

    图  14  不同反射面场景下,各算法在采样率为70%, 50%, 30%时人造卫星模型非视距三维成像结果

    Figure  14.  Under different reflective surface conditions, NLOS 3D imaging results of the satellite model by different algorithms when sampling ratio are 70%, 50% and 30%

    1  基于RM核算子的FISTA稀疏成像算法

    1.   FISTA sparse imaging algorithm based on RM kernel operator

     输入:稀疏降采样非视距回波$ \boldsymbol{Y} $,迭代步长$ \rho $,迭代次数T,正
     则化参数$ \eta $,迭代误差$ \varepsilon $
     输出:非视距目标重构结果$ {\boldsymbol{X}}^{\left(T\right)}\in {\mathbb{C}}^{W\times H} $
     初始化:$ t=1 $,$ {\boldsymbol{Z}}^{\left(1\right)}={\boldsymbol{X}}^{\left(0\right)}={\text{RM}}^{\dagger }\left(\boldsymbol{Y}\right) $,$ {c}^{\left(1\right)}=1 $;
     循环开始
     (1) 更新动量修正量残差:$ {\boldsymbol{V}}^{\left(t\right)}=\boldsymbol{Y}-\text{RM}\left({\boldsymbol{Z}}^{\left(t\right)}\right) $;
     (2) 梯度下降粗估计:$ {\boldsymbol{R}}^{\left(t\right)}={\boldsymbol{Z}}^{\left(t\right)}+\rho {\text{RM}}^{\dagger }\left({\boldsymbol{V}}^{\left(t\right)}\right) $;
     (3) 软阈值收缩:$ {\boldsymbol{X}}^{\left(t\right)}=\text{soft}\left({\boldsymbol{R}}^{\left(t\right)},\eta \right) $;
     (4) 更新动量修正系数:$ {c}^{\left(t+1\right)}=\dfrac{1+\sqrt{1+4{\left({c}^{\left(t\right)}\right)}^{2}}}{2} $;
     (5) 更新动量修正量:
     $ {\boldsymbol{Z}}^{\left(t+1\right)}={\boldsymbol{X}}^{\left(t\right)}+\left(\dfrac{{c}^{\left(t\right)}-1}{{c}^{\left(t+1\right)}}\right)\left({\boldsymbol{X}}^{\left(t\right)}-{\boldsymbol{X}}^{\left(t-1\right)}\right) $;
     (6) 终止准则判定:若$ \dfrac{\left|\left|{\boldsymbol{X}}^{\left(t+1\right)}-{\boldsymbol{X}}^{\left(t\right)}\right|\right|}{\left|\left|{\boldsymbol{X}}^{\left(t+1\right)}\right|\right|} > \varepsilon $则$ t=t+1 $;否
     则,结束循环;
     (7) 迭代判定:若$ t\leq T $,则重复步骤(1)–步骤(7);否则,结束
     循环。
     循环结束
    下载: 导出CSV

    表  1  非视距毫米波雷达成像试验系统主要参数

    Table  1.   Main parameters of the experimental NLOS millimeter wave radar imaging system

    参数 实测系统值
    载频(GHz)
    调频斜率(MHz/μs)
    79
    70.295
    带宽(GHz) 3.998
    X轴合成孔径长度(mm) 400
    X轴天线阵元间距(mm) 1
    Z轴合成孔径长度(mm) 400
    Z轴天线阵元间距(mm) 2
    脉冲发射间隔(ms) 25
    下载: 导出CSV

    表  2  4个目标的非视距毫米波三维成像试验数据数值评估结果

    Table  2.   Numerical evaluation results of experimental four-target NLOS 3D imaging data using millimeter wave radar

    目标 反射面 采样率 BP RMA FISTA NLFIST-Net
    ENT IC Time (s) ENT IC Time (s) ENT IC Time (s) ENT IC Time (s)
    O 金属板 70% 11.11 7.70 460.83 13.06 7.46 1.15 11.17 12.59 4.13 10.79 15.68 0.017
    30% 11.73 6.49 495.48 14.13 3.77 1.14 11.02 14.59 4.67 9.86 25.09 0.016
    墙面 70% 11.21 7.59 487.46 13.64 6.39 1.31 11.28 12.45 4.37 11.03 14.35 0.017
    30% 11.91 6.28 494.76 14.51 3.32 2.07 11.28 13.66 4.31 10.40 20.20 0.015
    S 金属板 70% 11.21 7.04 488.84 13.15 6.94 1.14 11.36 11.43 4.27 10.97 14.28 0.019
    30% 11.84 5.90 495.43 14.15 3.66 1.14 11.36 12.61 3.68 10.14 21.78 0.016
    墙面 70% 11.24 7.26 498.36 13.52 6.59 1.20 11.86 10.63 4.14 11.07 13.90 0.018
    30% 11.92 6.00 490.90 14.42 3.42 1.21 11.39 11.50 4.62 10.53 18.77 0.016
    铁塔 金属板 70% 10.68 15.91 543.18 13.93 9.90 0.74 10.90 22.83 4.03 10.08 28.24 0.016
    30% 11.93 11.26 540.94 14.89 4.26 0.74 11.09 23.24 4.19 9.57 35.87 0.015
    墙面 70% 12.03 10.84 458.58 15.03 3.49 0.82 12.04 16.58 4.24 10.94 23.18 0.016
    30% 13.39 4.89 469.50 15.32 1.57 0.74 12.42 12.50 4.29 10.84 24.22 0.017
    卫星 金属板 70% 11.00 8.47 542.64 13.22 7.44 0.84 11.32 12.95 4.31 10.79 15.95 0.018
    30% 11.71 6.99 479.34 14.25 3.76 0.77 11.42 13.46 4.33 9.92 25.19 0.016
    墙面 70% 11.89 6.55 479.34 14.79 3.22 0.79 11.88 11.24 4.46 11.08 14.61 0.018
    30% 12.94 4.28 473.34 15.1 1.86 0.73 11.67 12.75 4.08 9.99 25.55 0.017
    注:加粗数值代表数值评估最优的算法。
    下载: 导出CSV

    表  3  各成像算法计算复杂度

    Table  3.   Computational complexity of different imaging algorithms

    算法FLOPs数值实例
    BP$ {N}_{x}{N}_{z}{N}_{\rm r}\times 17{N}_{l}{N}_{\rm r} $$ 3.65\times {10}^{14} $
    RMA$ {N}_{\rm r}{N}_{l}\left(10{\log }_{2}{N}_{l}+6\right) $$ 1.56\times {10}^{9} $
    FISTA$ {N}_{\text{iter}}{N}_{\rm r}{N}_{l}\left(20{\log }_{2}{N}_{l}+24\right) $$ 4.83\times {10}^{10} $
    NLFIST-Net$ T{N}_{\rm r}{N}_{l}\left(20{\log }_{2}{N}_{l}+24\right) $$ 2.89\times {10}^{10} $
    下载: 导出CSV
  • [1] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010.

    YANG Jianyu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. doi: 10.3724/SP.J.1300.2012.20010.
    [2] 丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063.

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063.
    [3] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090.

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090.
    [4] 孔令讲, 郭世盛, 陈家辉, 等. 多径利用雷达目标探测技术综述与展望[J]. 雷达学报(中英文), 2024, 13(1): 23–45. doi: 10.12000/JR23134.

    KONG Lingjiang, GUO Shisheng, CHEN Jiahui, et al. Overview and prospects of multipath exploitation radar target detection technology[J]. Journal of Radars, 2024, 13(1): 23–45. doi: 10.12000/JR23134.
    [5] SMITH G E and MOBASSERI B G. Multipath exploitation for radar target classification[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 623–628. doi: 10.1109/RADAR.2012.6212215.
    [6] RASKAR R and DAVIS J. 5d time-light transport matrix: What can we reason about scene properties?[OL]. https://dspace.mit.edu/bitstream/handle/1721.1/67888/TransientLightReportRaskarDavis.pdf?sequence=1.
    [7] KIRMANI A, HUTCHISON T, DAVIS J, et al. Looking around the corner using transient imaging[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 159–166. doi: 10.1109/ICCV.2009.5459160.
    [8] VELTEN A, WILLWACHER T, GUPTA O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging[J]. Nature communications, 2012, 3(1): 745. doi: 10.1038/ncomms1747.
    [9] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature photonics, 2014, 8(10): 784–790. doi: 10.1038/nphoton.2014.189.
    [10] YEDIDIA A B, BARADAD M, THRAMPOULIDIS C, et al. Using unknown occluders to recover hidden scenes[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 12223–12231. doi: 10.1109/CVPR.2019.01251.
    [11] LIU Xintong, WANG Jianyu, LI Zhupeng, et al. Non-line-of-sight reconstruction with signal-object collaborative regularization[J]. Light: Science & Applications, 2021, 10(1): 198. doi: 10.1038/s41377-021-00633-3.
    [12] HAO Mingyang, NING Fangli, WANG Ke et al. Acoustic non-line-of-sight vehicle approaching and leaving detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9979–9991. doi: 10.1109/TITS.2024.3353749.
    [13] MAEDA T, WANG Yiqin, RASKAR R et al. Thermal non-line-of-sight imaging[C]. 2019 IEEE International Conference on Computational Photography (ICCP), Tokyo, Japan, 2019: 1–11. doi: 10.1109/ICCPHOT.2019.8747343.
    [14] ZHOU Zimu, YANG Zheng, WU Chenshu et al. WiFi-based indoor line-of-sight identification[J]. IEEE Transactions on Wireless Communications, 2015, 14(11): 6125–6136. doi: 10.1109/TWC.2015.2448540.
    [15] PAULI M, GÖTTEL B, SCHERR S, et al. Miniaturized millimeter-wave radar sensor for high-accuracy applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(5): 1707–1715. doi: 10.1109/TMTT.2017.2677910.
    [16] WANG Xiao, XU Linhai, SUN Hongbin, et al. On-road vehicle detection and tracking using MMW radar and monovision fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 2075–2084. doi: 10.1109/TITS.2016.2533542.
    [17] GUO Shisheng, ZHAO Qingsong, CUI Guolong, et al. Behind corner targets location using small aperture millimeter wave radar in nlos urban environment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 460–470. doi: 10.1109/JSTARS.2020.2963924.
    [18] CHEN Jiahui, ZHANG Yang, GUO Shisheng, et al. Joint estimation of nlos building layout and targets via sparsity-driven approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114513. doi: 10.1109/TGRS.2022.3182429.
    [19] WEI Shunjun, WEI Jinshan, LIU Xinyuan, et al. Nonline-of-sight 3-D imaging using millimeter-wave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5106518. doi: 10.1109/TGRS.2021.3112579.
    [20] 林雨青, 仇晓兰, 彭凌霄, 等. 基于多径模型的建筑区SAR三维成像中非视距目标重定位方法[J]. 雷达学报(中英文), 2024, 13(4): 777–790. doi: 10.12000/JR24057.

    LIN Yuqing, QIU Xiaolan, PENG Lingxiao, et al. Non-line-of-sight target relocation by multipath model in SAR 3D urban area imaging[J]. Journal of Radars, 2024, 13(4): 777–790. doi: 10.12000/JR24057.
    [21] WEN Yanbo, WEI Shunjun, WEI Jinshan, et al. Non-line-of-sight imaging of hidden moving target using millimeter-wave inverse synthetic aperture radar[C]. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 555–558. doi: 10.1109/IGARSS46834.2022.9883939.
    [22] TAN Xiaoheng, YANG Zhijun, LI Dong, et al. An efficient range-Doppler domain ISAR imaging approach for rapidly spinning targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2670–2681. doi: 10.1109/TGRS.2019.2953303.
    [23] 邢孟道, 马鹏辉, 楼屹杉, 等. 合成孔径雷达快速后向投影算法综述[J]. 雷达学报(中英文), 2024, 13(1): 1–22. doi: 10.12000/JR23183.

    XING Mengdao, MA Penghui, LOU Yishan, et al. Review of fast back projection algorithms in synthetic aperture radar[J]. Journal of Radars, 2024, 13(1): 1–22. doi: 10.12000/JR23183.
    [24] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582.
    [25] CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596.
    [26] ÁLVAREZ Y, RODRIGUEZ-VAQUEIRO Y, GONZALEZ-VALDES B, et al. Three-dimensional compressed sensing-based millimeter-wave imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(12): 5868–5873. doi: 10.1109/TAP.2015.2481487.
    [27] BARANIUK R and STEEGHS P. Compressive radar imaging[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 128–133. doi: 10.1109/RADAR.2007.374203.
    [28] ZHU Xiaoxiang and BAMLER R. Tomographic SAR Inversion by L1 -norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117.
    [29] WEI Shunjun, ZHANG Xiaoling, SHI Jun, et al. Sparse reconstruction for SAR imaging based on compressed sensing[J]. Progress in Electromagnetics Research, 2010, 109: 63–81. doi: 10.2528/PIER10080805.
    [30] LIU Xinyuan, WEI Shunjun, WEI Jinshan, et al. Non-line-of-sight millimeter-wave radar 3-D sparse reconstruct via MSSTV method[C]. 2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE), Chengdu, China, 2022: 424–427. doi: 10.1109/MAPE53743.2022.9935195.
    [31] 蔡响, 韦顺军, 文彦博, 等. 基于非视距雷达三维成像的隐藏目标精确重构方法[J]. 雷达学报(中英文), 2024, 13(4): 791–806. doi: 10.12000/JR24060.

    CAI Xiang, WEI Shunjun, WEN Yanbo, et al. Precise reconstruction method for hidden targets based on non-line-of-sight radar 3D imaging[J]. Journal of Radars, 2024, 13(4): 791–806. doi: 10.12000/JR24060.
    [32] CAI Xiang, WEI Shunjun, WEN Yanbo, et al. Bayesian-based 3-D MMW radar imaging of non-line-of-sight environments[C]. 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 2023: 1–3. doi: 10.1109/CSRSWTC60855.2023.10427181.
    [33] WEN Yanbo, WEI Shunjun, CAI Xiang, et al. NMTCS: Non-line-of-sight sparse reconstruct for hidden motion targets[C]. 2023 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), Guilin, China, 2023: 1–3. doi: 10.1109/CSRSWTC 60855.2023.10426822.
    [34] WEN Yanbo, WEI Shunjun, CAI xiang, et al. CMTI: Non-line-of-sight radar imaging for non-cooperative corner motion target[J]. IEEE Transactions on Vehicular Technology, 2025, 74(1): 179–190. doi: 10.1109/TVT.2024.3398218.
    [35] WEN Yanbo, WEI Shunjun, CAI xiang, et al. Non-line-of-sight sparse aperture ISAR imaging via a novel detail-aware regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5220218. doi: 10.1109/TGRS.2024.3447900.
    [36] 董小舒, 朱伟, 刘羽, 等. 毫米波雷达与视觉融合的车辆目标检测系统[J]. 指挥信息系统与技术, 2021, 12(1): 91–96. doi: 10.15908/j.cnki.cist.2021.01.017.

    DONG Xiaoshu, ZHU Wei, LIU Yu, et al. Vehicle object detection system combined of millimeter-wave radar and vision[J]. Command Information System And Technology, 2021, 12(1): 91–96. doi: 10.15908/j.cnki.cist.2021.01.017.
    [37] 张春杰, 陈奇, 赵佳琦. 基于注意力机制CNN-LSTM的毫米波雷达点云特征数据预测生成[J]. 电讯技术, 2024, 64(11): 1718–1725. doi: 10.20079/j.issn.1001-893x.240118005.

    ZHANG Chunjie, CHEN Qi, and ZHAO Jiaqi. Enhancement of mmwave radar point cloud feature data based on self-attention echanism CNN-LSTM[J]. Telecommunication Engineering, 2024, 64(11): 1718–1725. doi: 10.20079/j.issn.1001-893x.240118005.
    [38] GREGOR K and LECUN Y. Learning fast approximations of sparse coding[C]. The 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 2010: 399–406.
    [39] LIU Risheng, ZHANG Yuxi, CHENG Shichao, et al. A deep framework assembling principled modules for CS-MRI: Unrolling perspective, convergence behaviors, and practical modeling[J]. IEEE Transactions on Medical Imaging, 2020, 39(12): 4150–4163. doi: 10.1109/TMI.2020.3014193.
    [40] 王谋, 韦顺军, 沈蓉, 等. 基于自学习稀疏先验的三维SAR成像方法[J]. 雷达学报, 2023, 12(1): 36–52. doi: 10.12000/JR22101.

    WANG Mou, WEI Shunjun, SHEN Rong, et al. 3D SAR imaging method based on learned sparse prior[J]. Journal of Radars, 2023, 12(1): 36–52. doi: 10.12000/JR22101.
    [41] WANG Mou, WEI Shunjun, LIANG Jiadian, et al. RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205117. doi: 10.1109/TGRS.2021.3068405.
    [42] WANG Mou, WEI Shunjun, ZHOU Zichen, et al. CTV-Net: Complex-valued TV-driven network with nested topology for 3-D SAR imaging[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 5588–5602. doi: 10.1109/TNNLS.2022.3208252.
    [43] WANG Mou, WEI Shunjun, SHI Jun, et al. CSR-Net: A novel complex-valued network for fast and precise 3-D microwave sparse reconstruction[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4476–4492. doi: 10.1109/JSTARS.2020.3014696.
    [44] PU Wei. SAE-Net: A deep neural network for SAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220714. doi: 10.1109/TGRS.2021.3139914.
    [45] WANG Yingzhou, LI Lijun, and GONG Ke. Narrowband experimental study on millimeter-wave indoor propagation[C]. 1998 International Conference on Communication Technology. Proceedings (IEEE Cat. No.98EX243), Beijing, China, 1998: 5. doi: 10.1109/ICCT.1998.741269.
    [46] BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542.
    [47] XIANG Jinxi, DONG Yonggui, and YANG Yunjie. FISTA-Net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging[J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329–1339. doi: 10.1109/TMI.2021.3054167.
    [48] ZHOU Yulong, ZHONG Yu, WEI Zhun, et al. An improved deep learning scheme for solving 2-D and 3-D inverse scattering problem[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(5): 2853–2863. doi: 10.1109/TAP.2020.3027898.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-22
  • 修回日期:  2025-12-11

目录

    /

    返回文章
    返回