[1] |
李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087.LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087.
|
[2] |
吴晓芳, 代大海, 王雪松, 等. 合成孔径雷达电子对抗技术综述[J]. 信号处理, 2010, 26(3): 424–435. doi: 10.3969/j.issn.1003-0530.2010.03.017.WU Xiaofang, DAI Dahai, WANG Xuesong, et al. Review of synthetic aperture radar electronic countermeasures[J]. Signal Processing, 2010, 26(3): 424–435. doi: 10.3969/j.issn.1003-0530.2010.03.017.
|
[3] |
陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143.CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
|
[4] |
李兵, 洪文. 合成孔径雷达噪声干扰研究[J]. 电子学报, 2004, 32(12): 2035–2037. doi: 10.3321/j.issn:0372-2112.2004.12.025.LI Bing and HONG Wen. Study of noise jamming to SAR[J]. Acta Electronica Sinica, 2004, 32(12): 2035–2037. doi: 10.3321/j.issn:0372-2112.2004.12.025.
|
[5] |
吕波, 冯起, 张晓发, 等. 对SAR的随机脉冲卷积干扰研究[J]. 中国电子科学研究院学报, 2008, 3(3): 276–279. doi: 10.3969/j.issn.1673-5692.2008.03.011.LV Bo, FENG Qi, ZHANG Xiaofa, et al. Study of random pulse convolution jamming to SAR[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(3): 276–279. doi: 10.3969/j.issn.1673-5692.2008.03.011.
|
[6] |
黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027.HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027.
|
[7] |
黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的随机移频干扰[J]. 信号处理, 2007, 23(1): 41–45. doi: 10.3969/j.issn.1003-0530.2007.01.009.HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. Randomly-shift-frequency jamming style to SAR[J]. Signal Processing, 2007, 23(1): 41–45. doi: 10.3969/j.issn.1003-0530.2007.01.009.
|
[8] |
黄洪旭, 黄知涛, 吴京, 等. 对合成孔径雷达的步进移频干扰[J]. 宇航学报, 2011, 32(4): 898–902. doi: 10.3873/j.issn.1000-1328.2011.04.028.HUANG Hongxu, HUANG Zhitao, WU Jing, et al. Stepped-shift-frequency jamming to SAR[J]. Journal of Astronautics, 2011, 32(4): 898–902. doi: 10.3873/j.issn.1000-1328.2011.04.028.
|
[9] |
刘玉玲. SAR有源假目标精确位置欺骗干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2012.LIU Yuling. Research on SAR precisely position deception jamming[D]. [Master dissertation], National University of Defense Technolog, 2012.
|
[10] |
吴晓芳, 代大海, 王雪松, 等. 基于微动调制的SAR新型有源干扰方法[J]. 电子学报, 2010, 38(4): 954–959.WU Xiaofang, DAI Dahai, WANG Xuesong, et al. A novel method of active jamming for SAR based on micro motion modulation[J]. Acta Electronica Sinica, 2010, 38(4): 954–959.
|
[11] |
吴晓芳, 王雪松, 梁景修. SAR-GMTI高逼真匀速运动假目标调制干扰方法[J]. 宇航学报, 2012, 33(10): 1472–1479. doi: 10.3873/j.issn.1000-1328.2012.10.016.WU Xiaofang, WANG Xuesong, and LIANG Jingxiu. Modulation jamming method for high-vivid false uniformly-moving targets against SAR-GMTI[J]. Journal of Astronautics, 2012, 33(10): 1472–1479. doi: 10.3873/j.issn.1000-1328.2012.10.016.
|
[12] |
王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑 信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematical principle of intermittent sampling and forwarding interference[J]. Science in China (Series E), 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.
|
[13] |
吴晓芳, 柏仲干, 代大海, 等. 对SAR的方位向间歇采样转发干扰[J]. 信号处理, 2010, 26(1): 1–6. doi: 10.3969/j.issn.1003-0530.2010.01.001.WU Xiaofang, BAI Zhonggan, DAI Dahai, et al. Azimuth intermittent sampling repeater jamming to SAR[J]. Signal Processing, 2010, 26(1): 1–6. doi: 10.3969/j.issn.1003-0530.2010.01.001.
|
[14] |
胡东辉, 吴一戎. 合成孔径雷达散射波干扰研究[J]. 电子学报, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.HU Donghui and WU Yirong. The scatter-wave jamming to SAR[J]. Acta Electronica Sinica, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.
|
[15] |
ITU. Radio regulations[EB/OL]. https://www.itu.int/en/publications/ITU-R/Pages/publications.aspx?parent=R-REG-RR-2020&media=electronic, 2020.
|
[16] |
TAO Mingliang, SU Jia, HUANG Yan, et al. Mitigation of radio frequency interference in synthetic aperture radar data: Current status and future trends[J]. Remote Sensing, 2019, 11(20): 2438. doi: 10.3390/rs11202438.
|
[17] |
YANG Huizhang, TAO Mingliang, CHEN Shengyao, et al. On the mutual interference between spaceborne SARs: Modeling, characterization, and mitigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8470–8485. doi: 10.1109/TGRS.2020.3036635.
|
[18] |
YANG Huizhang, LI Kun, LI Jie, et al. BSF: Block subspace filter for removing narrowband and wideband radio interference artifacts in single-look complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211916. doi: 10.1109/TGRS.2021.3096538.
|
[19] |
LI Ning, LV Zongsen, and GUO Zhengwei. Observation and mitigation of mutual RFI between SAR satellites: A case study between Chinese GaoFen-3 and European sentinel-1A[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5112819. doi: 10.1109/TGRS.2022.3170363.
|
[20] |
FERRELL B H. Interference suppression in UHF synthetic aperture radar[C]. SPIE 2487, Algorithms for Synthetic Aperture Radar Imagery II, Orlando, USA, 1995: 96–106. doi: 10.1117/12.210830.
|
[21] |
LORD R T and INGGS M R. Approaches to RF interference suppression for VHF/UHF synthetic aperture radar[C]. 1998 South African Symposium on Communications and Signal Processing, Rondebosch, South Africa, 1998: 95–100. doi: 10.1109/COMSIG.1998.736929.
|
[22] |
POTSIS A, REIGBER A, and PAPATHANASSIOU K P. A phase preserving method for RF interference suppression in P-band synthetic aperture radar interferometric data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 2655–2657. doi: 10.1109/IGARSS.1999.771607.
|
[23] |
王彦平, 彭海良, 吴一戎, 等. 合成孔径雷达射频干扰抑制的现状及展望[J]. 航天电子对抗, 2002(6): 18–24. doi: 10.3969/j.issn.1673-2421.2002.06.005.WANG Yan, PENG Hailiang, WU Yirong, et al. Current status and prospect of RFI suppression for SAR[J]. Aerospace Electronic Warfare, 2002(6): 18–24. doi: 10.3969/j.issn.1673-2421.2002.06.005.
|
[24] |
ZHANG Shuangxi, XING Mengdao, GUO Rui, et al. Interference suppression algorithm for SAR based on time–frequency transform[J]. IEEE transactions on Geoscience and Remote Sensing, 2011, 49(10): 3765–3779. doi: 10.1109/TGRS.2011.2164409.
|
[25] |
LI Dong, LIU Hongqing, and YANG Lisheng. Efficient time-varying interference suppression method for synthetic aperture radar imaging based on time-frequency reconstruction and mask technique[J]. IET Radar, Sonar & Navigation, 2015, 9(7): 827–834. doi: 10.1049/iet-rsn.2014.0218.
|
[26] |
ZHOU Feng, WU Renbiao, XING Mengdao, et al. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 75–79. doi: 10.1109/LGRS.2006.887033.
|
[27] |
NGUYEN L H and TRAN T D. Robust and adaptive extraction of RFI signals from ultra-wideband radar data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7137–7140. doi: 10.1109/IGARSS.2012.6352017.
|
[28] |
HUANG Yan, LIAO Guisheng, ZHANG Lei, et al. Efficient narrowband RFI mitigation algorithms for SAR systems with reweighted tensor structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9396–9409. doi: 10.1109/TGRS.2019.2926440.
|
[29] |
黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
|
[30] |
YANG Huizhang, CHEN Chengzhi, CHEN Shengyao, et al. A dictionary-based SAR RFI suppression method via robust PCA and chirp scaling algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7): 1229–1233. doi: 10.1109/LGRS.2020.2997947.
|
[31] |
YANG Huizhang, HE Yaomin, DU Yanlei, et al. Two-dimensional spectral analysis filter for removal of LFM radar interference in spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5219016. doi: 10.1109/TGRS.2021.3132495.
|
[32] |
YANG Huizhang, LANG Ping, LU Xingyu, et al. Robust block subspace filtering for efficient removal of radio interference in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5206812. doi: 10.1109/TGRS.2024.3369021.
|
[33] |
FAN Weiwei, ZHOU Feng, TAO Mingliang, et al. Interference mitigation for synthetic aperture radar based on deep residual network[J]. Remote Sensing, 2019, 11(14): 1654. doi: 10.3390/rs11141654.
|
[34] |
WEI Shunjun, ZHANG Hao, ZENG Xiangfeng, et al. CARNet: An effective method for SAR image interference suppression[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103019. doi: 10.1016/j.jag.2022.103019.
|
[35] |
聂林, 韦顺军, 李佳慧, 等. 基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法[J]. 雷达学报, 2024, 13(5): 985–1003. doi: 10.12000/JR24072.NIE Lin, WEI Shunjun, LI Jiahui, et al. Active blanket jamming suppression method for spaceborne SAR images based on regional feature refinement perceptual learning[J]. Journal of Radars, 2024, 13(5): 985–1003. doi: 10.12000/JR24072.
|
[36] |
马晓岩, 秦江敏, 贺照辉, 等. 抑制SAR压制性干扰的三通道对消方法[J]. 电子学报, 2007, 35(6): 1015–1020. doi: 10.3321/j.issn:0372-2112.2007.06.002.MA Xiaoyan, QIN Jiangmin, HE Zhaohui, et al. Three-channel cancellation of SAR blanketing jamming suppression[J]. Acta Electronica Sinica, 2007, 35(6): 1015–1020. doi: 10.3321/j.issn:0372-2112.2007.06.002.
|
[37] |
李京生, 孙进平, 毛士艺. 一种基于STAP的多通道SAR噪声干扰抑制方法[J]. 电光与控制, 2008, 15(12): 18–20,67. doi: 10.3969/j.issn.1671-637X.2008.12.005.LI Jingsheng, SUN Jinping, and MAO Shiyi. A noise jamming suppression approach for multi-channel SAR based on STAP[J]. Electronics Optics & Control, 2008, 15(12): 18–20,67. doi: 10.3969/j.issn.1671-637X.2008.12.005.
|
[38] |
孟智超, 卢景月, 张磊. 前视多通道SAR自适应鉴别抑制欺骗干扰[J]. 雷达学报, 2019, 8(1): 82–89. doi: 10.12000/JR18081.MENG Zhichao, LU Jingyue, and ZHANG Lei. Forward-looking multi-channel SAR adaptive identification to suppress deception jamming[J]. Journal of Radars, 2019, 8(1): 82–89. doi: 10.12000/JR18081.
|
[39] |
张双喜. 高分辨宽测绘带多通道SAR和动目标成像理论与方法[D]. [博士论文], 西安电子科技大学, 2014.ZHANG Shuangxi. High-resolution and wide-swath multi-channel SAR and moving target imaging theory and methods[D]. [Ph.D. dissertation], Xidian University, 2014.
|
[40] |
BOLLIAN T, OSMANOGLU B, RINCON R, et al. Adaptive antenna pattern notching of interference in synthetic aperture radar data using digital beamforming[J]. Remote Sensing, 2019, 11(11): 1346. doi: 10.3390/rs11111346.
|
[41] |
YANG Lin, ZHENG Huifang, FENG Jin, et al. Detection and suppression of narrow band RFI for synthetic aperture radar imaging[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1189–1198. doi: 10.1016/j.cja.2015.06.018.
|
[42] |
NATSUAKI R, MOTOHKA T, WATANABE M, et al. An autocorrelation-based radio frequency interference detection and removal method in azimuth-frequency domain for SAR image[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5736–5751. doi: 10.1109/JSTARS.2017.2775205.
|
[43] |
MONTI-GUARNIERI A, GIUDICI D, and RECCHIA A. Identification of C-band radio frequency interferences from sentinel-1 data[J]. Remote Sensing, 2017, 9(11): 1183. doi: 10.3390/rs9111183.
|
[44] |
BOLLIAN T, OSMANOGLU B, RINCON R F, et al. Detection and geolocation of P-band radio frequency interference using EcoSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3608–3616. doi: 10.1109/JSTARS.2018.2830745.
|
[45] |
NATSUAKI R, JÄGER M, and PRATS-IRAOLA P. Similarity approach for radio frequency interference detection and correction in multi-receiver SAR[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 3770–3773. doi: 10.1109/IGARSS39084.2020.9323270.
|
[46] |
LV Zongsen, ZHANG Hengrui, LI Ning, et al. A two-step approach for pulse RFI detection in SAR data[C]. 2021 IEEE Sensors, Sydney, Australia, 2021: 1–4. doi: 10.1109/SENSORS47087.2021.9639826.
|
[47] |
LENG Xiangguang, JI Kefeng, and KUANG Gangyao. Radio frequency interference detection and localization in sentinel-1 images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9270–9281. doi: 10.1109/TGRS.2021.3049472.
|
[48] |
LI Ning, LV Zongsen, and GUO Zhengwei. Pulse RFI mitigation in synthetic aperture radar data via a three-step approach: Location, notch, and recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225617. doi: 10.1109/TGRS.2022.3161368.
|
[49] |
HUANG Bo, FATTAHI H, GHAEMI H, et al. Radio frequency interference detection and mitigation of NISAR data using slow time eigenvalue decomposition[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 5479–5482. doi: 10.1109/IGARSS52108.2023.10282324.
|
[50] |
YANG Huizhang, LANG Ping, HE Yaomin, et al. Lambda-1 detector: Adaptive interference detection in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5202613. doi: 10.1109/TGRS.2025.3529623.
|
[51] |
YU Junfei, LI Jingwen, SUN Bing, et al. Multiclass radio frequency interference detection and suppression for SAR based on the single shot multibox detector[J]. Sensors, 2018, 18(11): 4034. doi: 10.3390/s18114034.
|
[52] |
ARTIEMJEW P, CHOJKA A, and RAPINSKI J. Deep learning for RFI artifact recognition in sentinel-1 data[J]. Remote Sensing, 2021, 13(1): 7. doi: 10.3390/rs13010007.
|
[53] |
TAO Mingliang, TANG Shuting, LI Jieshuang, et al. Radio frequency interference detection for SAR data using spectrogram-based semantic network[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 1662–1665. doi: 10.1109/IGARSS47720.2021.9553478.
|
[54] |
LI Jieshuang, TAO Mingliang, ZHANG Xiang, et al. A semantic cognition enhancment network for interference detection in sentinel-1 SAR image[C]. 2021 CIE International Conference on Radar, Haikou, China, 2021: 1923–1926. doi: 10.1109/Radar53847.2021.10027879.
|
[55] |
LU Xingyu, WANG Chenchen, XU Xiaofeng, et al. Automatic RFI identification for sentinel-1 based on siamese-type deep CNN using repeat-pass images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231616. doi: 10.1109/TGRS.2022.3190488.
|
[56] |
TAO Mingliang, LI Jieshuang, CHEN Junli, et al. Radio frequency interference signature detection in radar remote sensing image using semantic cognition enhancement network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231714. doi: 10.1109/TGRS.2022.3190288.
|
[57] |
CEN Xi, LI Yachao, HAN Zhaoyun, et al. Self-supervised learning method for SAR multiinterference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220017. doi: 10.1109/TGRS.2023.3328019.
|
[58] |
ZHAO Jiayi, WANG Yongliang, LIAO Guisheng, et al. Intelligent detection and segmentation of space-borne SAR radio frequency interference[J]. Remote Sensing, 2023, 15(23): 5462. doi: 10.3390/rs15235462.
|
[59] |
SØRENSEN K A, HEISELBERG P, KUSK A, et al. Radio frequency interference in synthetic aperture radar images[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 2145–2148. doi: 10.1109/IGARSS52108.2023.10282756.
|
[60] |
CHOJKA A, ARTIEMJEW P, and RAPIŃSKI J. RFI artefacts detection in sentinel-1 level-1 SLC data based on image processing techniques[J]. Sensors, 2020, 20(10): 2919. doi: 10.3390/s20102919.
|
[61] |
DAN H. X marks the spot: Identifying MIM-104 patriot batteries from sentinel-1 SAR multi-temporal imagery[EB/OL]. https://medium.com/@HarelDan/x-marks-the-spot-579cdb1f534b. 2020.06.06
|
[62] |
LI Ning, ZHANG Hengrui, LV Zongsen, et al. Simultaneous screening and detection of RFI from massive SAR images: A case study on European sentinel-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231917. doi: 10.1109/TGRS.2022.3191815.
|
[63] |
TAO Mingliang, LAI Siqi, LI Jieshuang, et al. Extraction and mitigation of radio frequency interference artifacts based on time-series sentinel-1 SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5217211. doi: 10.1109/TGRS.2021.3126485.
|
[64] |
陶臣嵩, 陈思伟, 肖顺平. 基于深度学习模型的SAR图像间歇采样转发干扰检测[J]. 系统工程与电子技术, 2023, 45(11): 3465–3473. doi: 10.12305/j.issn.1001-506X.2023.11.12.TAO Chensong, CHEN Siwei, and XIAO Shunping. SAR image interrupted sampling repeater jamming detection based on deep learning models[J]. Systems Engineering and Electronics, 2023, 45(11): 3465–3473. doi: 10.12305/j.issn.1001-506X.2023.11.12.
|
[65] |
张皓宇, 全斯农, 田元荣, 等. 多阶段联合的SAR图像灵巧压制干扰检测方法[J]. 雷达科学与技术, 2024, 22(4): 377–384,390. doi: 10.3969/j.issn.1672-2337.2024.04.003.ZHANG Haoyu, QUAN Sinong, TIAN Yuanrong, et al. A detection method for multi-stage joint SAR images dexterous suppression jamming[J]. Radar Science and Technology, 2024, 22(4): 377–384,390. doi: 10.3969/j.issn.1672-2337.2024.04.003.
|
[66] |
CHAN H L and YEO T S. Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1531–1539. doi: 10.1109/36.718857.
|
[67] |
SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
|
[68] |
BOCKER R P, HENDERSON T B, JONES S A, et al. New inverse synthetic aperture radar algorithm for translational motion compensation[C]. SPIE 1569, Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision, San Diego, USA, 1991: 298–310. doi: 10.1117/12.48388.
|
[69] |
CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
|
[70] |
杨健, 殷君君. 极化雷达理论与遥感应用[M]. 北京: 科学出版社, 2020: 9–10.YANG Jian and YIN Junjun. Theory and Remote Sensing Application of Polarimetric Radar[M]. Beijing: Science Press, 2020: 9–10.
|
[71] |
仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
|