SAR图像子带对比度和子带熵:概念及在干扰检测与抑制中的应用

杨会章 席峰 刘中 刘爱芳 杨健

杨会章, 席峰, 刘中, 等. SAR图像子带对比度和子带熵:概念及在干扰检测与抑制中的应用[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25027
引用本文: 杨会章, 席峰, 刘中, 等. SAR图像子带对比度和子带熵:概念及在干扰检测与抑制中的应用[J]. 雷达学报(中英文), 待出版. doi: 10.12000/JR25027
YANG Huizhang, XI Feng, LIU Zhong, et al. Sub-band contrast and entropy of SAR images: concepts and applications to interference detection and suppression[J]. Journal of Radars, in press. doi: 10.12000/JR25027
Citation: YANG Huizhang, XI Feng, LIU Zhong, et al. Sub-band contrast and entropy of SAR images: concepts and applications to interference detection and suppression[J]. Journal of Radars, in press. doi: 10.12000/JR25027

SAR图像子带对比度和子带熵:概念及在干扰检测与抑制中的应用

DOI: 10.12000/JR25027
基金项目: 国家自然科学基金(62301259, 62171224),中央高校基本科研业务费专项资金项目(30924010914)
详细信息
    作者简介:

    杨会章,博士,副教授,主要研究方向为雷达信号与图像处理

    席 峰,博士,副教授,主要研究方向雷达信号处理、统计和阵列信号处理、雷达通信一体化

    刘 中,博士,教授,主要研究方向雷达系统、雷达信号处理、阵列信号处理

    刘爱芳,博士,研究员,主要研究方向为合成孔径雷达总体设计

    杨 健,博士,教授,主要研究方向为极化雷达理论及其应用等

    通讯作者:

    杨会章 hzyang@njust.edu.cn

  • 责任主编:李永祯 Corresponding Editor: LI Yongzhen
  • 11) https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.betainc.html2) https://ww2.mathworks.cn/help/stats/betainv.html
  • 中图分类号: TN972

Sub-band Contrast and Entropy of SAR Images: Concepts and Applications to Interference Detection and Suppression

Funds: The National Natural Science Foundation of China (62301259, 62171224), The Fundamental Research Funds for the Central Universities (30924010914)
More Information
  • 摘要: 该文提出一种从单视复数合成孔径雷达(SAR)图像中检测干扰的方法,并将该方法用于自适应干扰抑制处理。所提方法不仅适用于间歇采样转发干扰,还适用于星载SAR中常见的线性调频脉冲等无意干扰。首先将一幅单视复数SAR图像在距离频域按照等带宽划分为多个子带图像,然后对子带图像的像素强度进行建模,并分析干扰像素和非干扰像素在子带域的起伏机制。干扰像素在不同子带中的能量分布不均匀,导致其强度在子带域具有显著的起伏,而非干扰像素的强度在子带域则较为稳定。基于上述发现,本文定义子带对比度和子带熵作为统计量以衡量像素强度在子带域的起伏特征,然后把两者与设定的阈值进行比较以得到干扰检测结果。经过统计分析,在无干扰情况下上述两个统计量近似服从Beta分布。基于这一发现,本文用Beta分布拟合这两者的分布,并在恒虚警准则下给出了检测阈值的确定方法。实验结果表明,所提方法不仅能有效检测间歇采样转发干扰,还能检测常见的无意干扰。本文还研究了干信比对检测性能的影响,并通过蒙特卡罗仿真验证了方法的可靠性和稳定性。此外,该文还提出了一种基于秩1模型的干扰抑制方法,能够对被检测到含有干扰的图像区域进行自适应干扰抑制,从而降低干扰对下游任务的不利影响。

     

  • 图  1  频谱均衡示意图

    Figure  1.  Illustration of spectrum equalization

    图  2  子带图像生成流程图

    Figure  2.  Diagram of subband image generation

    图  3  SAR图像间歇采样转发干扰示例与干扰的时频图

    Figure  3.  Example ISRJ in a SAR image and its spectrogram

    图  4  一幅含间歇采样转发干扰的SAR图像所生成的10幅子带图像

    Figure  4.  Ten subband images generated from a SAR image having ISRJ

    图  5  强目标像素(P1-P3)、背景像素(P4-P6)、干扰像素(P7-P9)的子带域起伏曲线

    Figure  5.  The fluctuation profiles of strong pixels (P1-P3), background pixels (P4-P6), and interference pixels (P7-P9)

    图  6  一幅单视复SAR图像计算得到的子带对比度和子带熵示例

    Figure  6.  Examples of subband contrast and subband entropy for a SAR image with ISRJ

    图  7  子带对比度和子带熵样本的直方图分布和Beta分布概率密度函数拟合结果示例

    Figure  7.  Example of histogram distribution and beta fitting results of subband contrast and subband entropy

    图  8  子带对比度和子带熵样本的累计直方图分布和Beta分布累计概率密度函数拟合结果示例

    Figure  8.  Example of cumulative histogram and beta fitting results for subband contrast and subband entropy

    图  9  基于子带对比度/熵的干扰检测与自适应干扰抑制流程

    Figure  9.  Interference detection and adaptive interference suppression flow based on subband contrast/entropy

    图  10  第1组实验的4种干扰情况和检测与抑制结果

    Figure  10.  Four interference conditions and detection and suppression results of the first group of experiments

    图  11  第2组实验的四种干扰情况和检测与抑制结果

    Figure  11.  Four interference conditions and detection and suppression results of the second group of experiments

    图  12  第3组实验的四种干扰情况和检测与抑制结果

    Figure  12.  Four interference conditions and detection and suppression results of the third group of experiments

    图  13  第四组实验的干扰检测与抑制结果

    Figure  13.  Four interference conditions and detection and suppression results of the fourth group of experiments

    图  14  第4组实验中无意干扰的子带对比度特征图(第2行)和子带熵特征图(第3行)

    Figure  14.  Subband contrast feature maps (row 2) and subband entropy feature maps (row 3) in the fourth group of experiments

    图  15  两组干扰像素的子带对比度和子带熵随JSR的变化曲线

    Figure  15.  Curves of subband contrast and subband entropy for two groups of interfering pixels with JSR

    图  16  用子带对比度进行检测获得的检测概率随阈值和虚警概率的变化曲线

    Figure  16.  Curves of detection probability obtained by detection using subband contrast under different thresholds and false alarm probabilities

    图  17  用子带熵进行检测获得的检测概率随检测阈值和虚警概率的变化曲线

    Figure  17.  Curves of detection probability obtained by detection using subband entropy under different thresholds and false alarm probabilities

  • [1] 李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087.

    LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087.
    [2] 吴晓芳, 代大海, 王雪松, 等. 合成孔径雷达电子对抗技术综述[J]. 信号处理, 2010, 26(3): 424–435. doi: 10.3969/j.issn.1003-0530.2010.03.017.

    WU Xiaofang, DAI Dahai, WANG Xuesong, et al. Review of synthetic aperture radar electronic countermeasures[J]. Signal Processing, 2010, 26(3): 424–435. doi: 10.3969/j.issn.1003-0530.2010.03.017.
    [3] 陈思伟, 崔兴超, 李铭典, 等. 基于深度CNN模型的SAR图像有源干扰类型识别方法[J]. 雷达学报, 2022, 11(5): 897–908. doi: 10.12000/JR22143.

    CHEN Siwei, CUI Xingchao, LI Mingdian, et al. SAR image active jamming type recognition based on deep CNN model[J]. Journal of Radars, 2022, 11(5): 897–908. doi: 10.12000/JR22143.
    [4] 李兵, 洪文. 合成孔径雷达噪声干扰研究[J]. 电子学报, 2004, 32(12): 2035–2037. doi: 10.3321/j.issn:0372-2112.2004.12.025.

    LI Bing and HONG Wen. Study of noise jamming to SAR[J]. Acta Electronica Sinica, 2004, 32(12): 2035–2037. doi: 10.3321/j.issn:0372-2112.2004.12.025.
    [5] 吕波, 冯起, 张晓发, 等. 对SAR的随机脉冲卷积干扰研究[J]. 中国电子科学研究院学报, 2008, 3(3): 276–279. doi: 10.3969/j.issn.1673-5692.2008.03.011.

    LV Bo, FENG Qi, ZHANG Xiaofa, et al. Study of random pulse convolution jamming to SAR[J]. Journal of China Academy of Electronics and Information Technology, 2008, 3(3): 276–279. doi: 10.3969/j.issn.1673-5692.2008.03.011.
    [6] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027.

    HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027.
    [7] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的随机移频干扰[J]. 信号处理, 2007, 23(1): 41–45. doi: 10.3969/j.issn.1003-0530.2007.01.009.

    HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. Randomly-shift-frequency jamming style to SAR[J]. Signal Processing, 2007, 23(1): 41–45. doi: 10.3969/j.issn.1003-0530.2007.01.009.
    [8] 黄洪旭, 黄知涛, 吴京, 等. 对合成孔径雷达的步进移频干扰[J]. 宇航学报, 2011, 32(4): 898–902. doi: 10.3873/j.issn.1000-1328.2011.04.028.

    HUANG Hongxu, HUANG Zhitao, WU Jing, et al. Stepped-shift-frequency jamming to SAR[J]. Journal of Astronautics, 2011, 32(4): 898–902. doi: 10.3873/j.issn.1000-1328.2011.04.028.
    [9] 刘玉玲. SAR有源假目标精确位置欺骗干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2012.

    LIU Yuling. Research on SAR precisely position deception jamming[D]. [Master dissertation], National University of Defense Technolog, 2012.
    [10] 吴晓芳, 代大海, 王雪松, 等. 基于微动调制的SAR新型有源干扰方法[J]. 电子学报, 2010, 38(4): 954–959.

    WU Xiaofang, DAI Dahai, WANG Xuesong, et al. A novel method of active jamming for SAR based on micro motion modulation[J]. Acta Electronica Sinica, 2010, 38(4): 954–959.
    [11] 吴晓芳, 王雪松, 梁景修. SAR-GMTI高逼真匀速运动假目标调制干扰方法[J]. 宇航学报, 2012, 33(10): 1472–1479. doi: 10.3873/j.issn.1000-1328.2012.10.016.

    WU Xiaofang, WANG Xuesong, and LIANG Jingxiu. Modulation jamming method for high-vivid false uniformly-moving targets against SAR-GMTI[J]. Journal of Astronautics, 2012, 33(10): 1472–1479. doi: 10.3873/j.issn.1000-1328.2012.10.016.
    [12] 王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑 信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematical principle of intermittent sampling and forwarding interference[J]. Science in China (Series E), 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.
    [13] 吴晓芳, 柏仲干, 代大海, 等. 对SAR的方位向间歇采样转发干扰[J]. 信号处理, 2010, 26(1): 1–6. doi: 10.3969/j.issn.1003-0530.2010.01.001.

    WU Xiaofang, BAI Zhonggan, DAI Dahai, et al. Azimuth intermittent sampling repeater jamming to SAR[J]. Signal Processing, 2010, 26(1): 1–6. doi: 10.3969/j.issn.1003-0530.2010.01.001.
    [14] 胡东辉, 吴一戎. 合成孔径雷达散射波干扰研究[J]. 电子学报, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.

    HU Donghui and WU Yirong. The scatter-wave jamming to SAR[J]. Acta Electronica Sinica, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.
    [15] ITU. Radio regulations[EB/OL]. https://www.itu.int/en/publications/ITU-R/Pages/publications.aspx?parent=R-REG-RR-2020&media=electronic, 2020.
    [16] TAO Mingliang, SU Jia, HUANG Yan, et al. Mitigation of radio frequency interference in synthetic aperture radar data: Current status and future trends[J]. Remote Sensing, 2019, 11(20): 2438. doi: 10.3390/rs11202438.
    [17] YANG Huizhang, TAO Mingliang, CHEN Shengyao, et al. On the mutual interference between spaceborne SARs: Modeling, characterization, and mitigation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8470–8485. doi: 10.1109/TGRS.2020.3036635.
    [18] YANG Huizhang, LI Kun, LI Jie, et al. BSF: Block subspace filter for removing narrowband and wideband radio interference artifacts in single-look complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5211916. doi: 10.1109/TGRS.2021.3096538.
    [19] LI Ning, LV Zongsen, and GUO Zhengwei. Observation and mitigation of mutual RFI between SAR satellites: A case study between Chinese GaoFen-3 and European sentinel-1A[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5112819. doi: 10.1109/TGRS.2022.3170363.
    [20] FERRELL B H. Interference suppression in UHF synthetic aperture radar[C]. SPIE 2487, Algorithms for Synthetic Aperture Radar Imagery II, Orlando, USA, 1995: 96–106. doi: 10.1117/12.210830.
    [21] LORD R T and INGGS M R. Approaches to RF interference suppression for VHF/UHF synthetic aperture radar[C]. 1998 South African Symposium on Communications and Signal Processing, Rondebosch, South Africa, 1998: 95–100. doi: 10.1109/COMSIG.1998.736929.
    [22] POTSIS A, REIGBER A, and PAPATHANASSIOU K P. A phase preserving method for RF interference suppression in P-band synthetic aperture radar interferometric data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999: 2655–2657. doi: 10.1109/IGARSS.1999.771607.
    [23] 王彦平, 彭海良, 吴一戎, 等. 合成孔径雷达射频干扰抑制的现状及展望[J]. 航天电子对抗, 2002(6): 18–24. doi: 10.3969/j.issn.1673-2421.2002.06.005.

    WANG Yan, PENG Hailiang, WU Yirong, et al. Current status and prospect of RFI suppression for SAR[J]. Aerospace Electronic Warfare, 2002(6): 18–24. doi: 10.3969/j.issn.1673-2421.2002.06.005.
    [24] ZHANG Shuangxi, XING Mengdao, GUO Rui, et al. Interference suppression algorithm for SAR based on time–frequency transform[J]. IEEE transactions on Geoscience and Remote Sensing, 2011, 49(10): 3765–3779. doi: 10.1109/TGRS.2011.2164409.
    [25] LI Dong, LIU Hongqing, and YANG Lisheng. Efficient time-varying interference suppression method for synthetic aperture radar imaging based on time-frequency reconstruction and mask technique[J]. IET Radar, Sonar & Navigation, 2015, 9(7): 827–834. doi: 10.1049/iet-rsn.2014.0218.
    [26] ZHOU Feng, WU Renbiao, XING Mengdao, et al. Eigensubspace-based filtering with application in narrow-band interference suppression for SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 75–79. doi: 10.1109/LGRS.2006.887033.
    [27] NGUYEN L H and TRAN T D. Robust and adaptive extraction of RFI signals from ultra-wideband radar data[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7137–7140. doi: 10.1109/IGARSS.2012.6352017.
    [28] HUANG Yan, LIAO Guisheng, ZHANG Lei, et al. Efficient narrowband RFI mitigation algorithms for SAR systems with reweighted tensor structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9396–9409. doi: 10.1109/TGRS.2019.2926440.
    [29] 黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113.

    HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113.
    [30] YANG Huizhang, CHEN Chengzhi, CHEN Shengyao, et al. A dictionary-based SAR RFI suppression method via robust PCA and chirp scaling algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7): 1229–1233. doi: 10.1109/LGRS.2020.2997947.
    [31] YANG Huizhang, HE Yaomin, DU Yanlei, et al. Two-dimensional spectral analysis filter for removal of LFM radar interference in spaceborne SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5219016. doi: 10.1109/TGRS.2021.3132495.
    [32] YANG Huizhang, LANG Ping, LU Xingyu, et al. Robust block subspace filtering for efficient removal of radio interference in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5206812. doi: 10.1109/TGRS.2024.3369021.
    [33] FAN Weiwei, ZHOU Feng, TAO Mingliang, et al. Interference mitigation for synthetic aperture radar based on deep residual network[J]. Remote Sensing, 2019, 11(14): 1654. doi: 10.3390/rs11141654.
    [34] WEI Shunjun, ZHANG Hao, ZENG Xiangfeng, et al. CARNet: An effective method for SAR image interference suppression[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 114: 103019. doi: 10.1016/j.jag.2022.103019.
    [35] 聂林, 韦顺军, 李佳慧, 等. 基于区域特征细化感知学习的星载SAR图像有源压制干扰抑制方法[J]. 雷达学报, 2024, 13(5): 985–1003. doi: 10.12000/JR24072.

    NIE Lin, WEI Shunjun, LI Jiahui, et al. Active blanket jamming suppression method for spaceborne SAR images based on regional feature refinement perceptual learning[J]. Journal of Radars, 2024, 13(5): 985–1003. doi: 10.12000/JR24072.
    [36] 马晓岩, 秦江敏, 贺照辉, 等. 抑制SAR压制性干扰的三通道对消方法[J]. 电子学报, 2007, 35(6): 1015–1020. doi: 10.3321/j.issn:0372-2112.2007.06.002.

    MA Xiaoyan, QIN Jiangmin, HE Zhaohui, et al. Three-channel cancellation of SAR blanketing jamming suppression[J]. Acta Electronica Sinica, 2007, 35(6): 1015–1020. doi: 10.3321/j.issn:0372-2112.2007.06.002.
    [37] 李京生, 孙进平, 毛士艺. 一种基于STAP的多通道SAR噪声干扰抑制方法[J]. 电光与控制, 2008, 15(12): 18–20,67. doi: 10.3969/j.issn.1671-637X.2008.12.005.

    LI Jingsheng, SUN Jinping, and MAO Shiyi. A noise jamming suppression approach for multi-channel SAR based on STAP[J]. Electronics Optics & Control, 2008, 15(12): 18–20,67. doi: 10.3969/j.issn.1671-637X.2008.12.005.
    [38] 孟智超, 卢景月, 张磊. 前视多通道SAR自适应鉴别抑制欺骗干扰[J]. 雷达学报, 2019, 8(1): 82–89. doi: 10.12000/JR18081.

    MENG Zhichao, LU Jingyue, and ZHANG Lei. Forward-looking multi-channel SAR adaptive identification to suppress deception jamming[J]. Journal of Radars, 2019, 8(1): 82–89. doi: 10.12000/JR18081.
    [39] 张双喜. 高分辨宽测绘带多通道SAR和动目标成像理论与方法[D]. [博士论文], 西安电子科技大学, 2014.

    ZHANG Shuangxi. High-resolution and wide-swath multi-channel SAR and moving target imaging theory and methods[D]. [Ph.D. dissertation], Xidian University, 2014.
    [40] BOLLIAN T, OSMANOGLU B, RINCON R, et al. Adaptive antenna pattern notching of interference in synthetic aperture radar data using digital beamforming[J]. Remote Sensing, 2019, 11(11): 1346. doi: 10.3390/rs11111346.
    [41] YANG Lin, ZHENG Huifang, FENG Jin, et al. Detection and suppression of narrow band RFI for synthetic aperture radar imaging[J]. Chinese Journal of Aeronautics, 2015, 28(4): 1189–1198. doi: 10.1016/j.cja.2015.06.018.
    [42] NATSUAKI R, MOTOHKA T, WATANABE M, et al. An autocorrelation-based radio frequency interference detection and removal method in azimuth-frequency domain for SAR image[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5736–5751. doi: 10.1109/JSTARS.2017.2775205.
    [43] MONTI-GUARNIERI A, GIUDICI D, and RECCHIA A. Identification of C-band radio frequency interferences from sentinel-1 data[J]. Remote Sensing, 2017, 9(11): 1183. doi: 10.3390/rs9111183.
    [44] BOLLIAN T, OSMANOGLU B, RINCON R F, et al. Detection and geolocation of P-band radio frequency interference using EcoSAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3608–3616. doi: 10.1109/JSTARS.2018.2830745.
    [45] NATSUAKI R, JÄGER M, and PRATS-IRAOLA P. Similarity approach for radio frequency interference detection and correction in multi-receiver SAR[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 3770–3773. doi: 10.1109/IGARSS39084.2020.9323270.
    [46] LV Zongsen, ZHANG Hengrui, LI Ning, et al. A two-step approach for pulse RFI detection in SAR data[C]. 2021 IEEE Sensors, Sydney, Australia, 2021: 1–4. doi: 10.1109/SENSORS47087.2021.9639826.
    [47] LENG Xiangguang, JI Kefeng, and KUANG Gangyao. Radio frequency interference detection and localization in sentinel-1 images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9270–9281. doi: 10.1109/TGRS.2021.3049472.
    [48] LI Ning, LV Zongsen, and GUO Zhengwei. Pulse RFI mitigation in synthetic aperture radar data via a three-step approach: Location, notch, and recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5225617. doi: 10.1109/TGRS.2022.3161368.
    [49] HUANG Bo, FATTAHI H, GHAEMI H, et al. Radio frequency interference detection and mitigation of NISAR data using slow time eigenvalue decomposition[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 5479–5482. doi: 10.1109/IGARSS52108.2023.10282324.
    [50] YANG Huizhang, LANG Ping, HE Yaomin, et al. Lambda-1 detector: Adaptive interference detection in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5202613. doi: 10.1109/TGRS.2025.3529623.
    [51] YU Junfei, LI Jingwen, SUN Bing, et al. Multiclass radio frequency interference detection and suppression for SAR based on the single shot multibox detector[J]. Sensors, 2018, 18(11): 4034. doi: 10.3390/s18114034.
    [52] ARTIEMJEW P, CHOJKA A, and RAPINSKI J. Deep learning for RFI artifact recognition in sentinel-1 data[J]. Remote Sensing, 2021, 13(1): 7. doi: 10.3390/rs13010007.
    [53] TAO Mingliang, TANG Shuting, LI Jieshuang, et al. Radio frequency interference detection for SAR data using spectrogram-based semantic network[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 1662–1665. doi: 10.1109/IGARSS47720.2021.9553478.
    [54] LI Jieshuang, TAO Mingliang, ZHANG Xiang, et al. A semantic cognition enhancment network for interference detection in sentinel-1 SAR image[C]. 2021 CIE International Conference on Radar, Haikou, China, 2021: 1923–1926. doi: 10.1109/Radar53847.2021.10027879.
    [55] LU Xingyu, WANG Chenchen, XU Xiaofeng, et al. Automatic RFI identification for sentinel-1 based on siamese-type deep CNN using repeat-pass images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231616. doi: 10.1109/TGRS.2022.3190488.
    [56] TAO Mingliang, LI Jieshuang, CHEN Junli, et al. Radio frequency interference signature detection in radar remote sensing image using semantic cognition enhancement network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231714. doi: 10.1109/TGRS.2022.3190288.
    [57] CEN Xi, LI Yachao, HAN Zhaoyun, et al. Self-supervised learning method for SAR multiinterference suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5220017. doi: 10.1109/TGRS.2023.3328019.
    [58] ZHAO Jiayi, WANG Yongliang, LIAO Guisheng, et al. Intelligent detection and segmentation of space-borne SAR radio frequency interference[J]. Remote Sensing, 2023, 15(23): 5462. doi: 10.3390/rs15235462.
    [59] SØRENSEN K A, HEISELBERG P, KUSK A, et al. Radio frequency interference in synthetic aperture radar images[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 2145–2148. doi: 10.1109/IGARSS52108.2023.10282756.
    [60] CHOJKA A, ARTIEMJEW P, and RAPIŃSKI J. RFI artefacts detection in sentinel-1 level-1 SLC data based on image processing techniques[J]. Sensors, 2020, 20(10): 2919. doi: 10.3390/s20102919.
    [61] DAN H. X marks the spot: Identifying MIM-104 patriot batteries from sentinel-1 SAR multi-temporal imagery[EB/OL]. https://medium.com/@HarelDan/x-marks-the-spot-579cdb1f534b. 2020.06.06
    [62] LI Ning, ZHANG Hengrui, LV Zongsen, et al. Simultaneous screening and detection of RFI from massive SAR images: A case study on European sentinel-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231917. doi: 10.1109/TGRS.2022.3191815.
    [63] TAO Mingliang, LAI Siqi, LI Jieshuang, et al. Extraction and mitigation of radio frequency interference artifacts based on time-series sentinel-1 SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5217211. doi: 10.1109/TGRS.2021.3126485.
    [64] 陶臣嵩, 陈思伟, 肖顺平. 基于深度学习模型的SAR图像间歇采样转发干扰检测[J]. 系统工程与电子技术, 2023, 45(11): 3465–3473. doi: 10.12305/j.issn.1001-506X.2023.11.12.

    TAO Chensong, CHEN Siwei, and XIAO Shunping. SAR image interrupted sampling repeater jamming detection based on deep learning models[J]. Systems Engineering and Electronics, 2023, 45(11): 3465–3473. doi: 10.12305/j.issn.1001-506X.2023.11.12.
    [65] 张皓宇, 全斯农, 田元荣, 等. 多阶段联合的SAR图像灵巧压制干扰检测方法[J]. 雷达科学与技术, 2024, 22(4): 377–384,390. doi: 10.3969/j.issn.1672-2337.2024.04.003.

    ZHANG Haoyu, QUAN Sinong, TIAN Yuanrong, et al. A detection method for multi-stage joint SAR images dexterous suppression jamming[J]. Radar Science and Technology, 2024, 22(4): 377–384,390. doi: 10.3969/j.issn.1672-2337.2024.04.003.
    [66] CHAN H L and YEO T S. Noniterative quality phase-gradient autofocus (QPGA) algorithm for spotlight SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1531–1539. doi: 10.1109/36.718857.
    [67] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
    [68] BOCKER R P, HENDERSON T B, JONES S A, et al. New inverse synthetic aperture radar algorithm for translational motion compensation[C]. SPIE 1569, Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision, San Diego, USA, 1991: 298–310. doi: 10.1117/12.48388.
    [69] CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
    [70] 杨健, 殷君君. 极化雷达理论与遥感应用[M]. 北京: 科学出版社, 2020: 9–10.

    YANG Jian and YIN Junjun. Theory and Remote Sensing Application of Polarimetric Radar[M]. Beijing: Science Press, 2020: 9–10.
    [71] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112.

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112.
  • 加载中
图(17)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-12
  • 修回日期:  2025-05-21

目录

    /

    返回文章
    返回