Track-MT3:一种基于Transformer的新型多目标跟踪算法

陈辉 杜双燕 连峰 韩崇昭

陈辉, 杜双燕, 连峰, 等. Track-MT3:一种基于Transformer的新型多目标跟踪算法[J]. 雷达学报(中英文), 2024, 13(6): 1202–1219. doi: 10.12000/JR24164
引用本文: 陈辉, 杜双燕, 连峰, 等. Track-MT3:一种基于Transformer的新型多目标跟踪算法[J]. 雷达学报(中英文), 2024, 13(6): 1202–1219. doi: 10.12000/JR24164
CHEN Hui, DU Shuangyan, LIAN Feng, et al. Track-MT3: A novel multitarget tracking algorithm based on transformer network[J]. Journal of Radars, 2024, 13(6): 1202–1219. doi: 10.12000/JR24164
Citation: CHEN Hui, DU Shuangyan, LIAN Feng, et al. Track-MT3: A novel multitarget tracking algorithm based on transformer network[J]. Journal of Radars, 2024, 13(6): 1202–1219. doi: 10.12000/JR24164

Track-MT3:一种基于Transformer的新型多目标跟踪算法

DOI: 10.12000/JR24164
基金项目: 国家自然科学基金(62163023, 61873116, 62363023, 62366031),2024年甘肃省重点人才项目资助
详细信息
    作者简介:

    陈 辉,教授,博士生导师,主要研究方向为数据融合、统计信号处理、机器学习和智能决策

    杜双燕,硕士生,主要研究方向为深度学习和雷达目标跟踪

    连 峰,教授,博士生导师,主要研究方向为多源信息融合、滤波与估计算法、气动融合算法

    韩崇昭,教授,博士生导师,主要研究方向为数据融合、电子对抗、雷达目标跟踪等

    通讯作者:

    陈辉 chenh@lut.edu.cn

  • 责任主编:李天成 Corresponding Editor: LI Tiancheng
  • 中图分类号: TN953.6; TP389.1

Track-MT3: A Novel Multitarget Tracking Algorithm Based on Transformer Network

Funds: The National Natural Science Foundation of China (62163023, 61873116, 62363023, 62366031), The Key Talent Project of Gansu Province in 2024
More Information
  • 摘要: 针对复杂环境中多目标跟踪数据关联难度大、难以实现目标长时间稳定跟踪的问题,该文创新性地提出了一种基于Transformer网络的端到端多目标跟踪模型Track-MT3。首先,引入了检测查询和跟踪查询机制,隐式地执行量测-目标的数据关联并且实现了目标的状态估计任务。然后,采用跨帧目标对齐策略增强跟踪轨迹的时间连续性。同时,设计了查询变换与时间特征编码模块强化目标运动建模能力。最后,在模型训练中采用了集体平均损失函数,实现了模型性能的全局优化。通过构造多种复杂的多目标跟踪场景,并利用多重性能指标进行评估,Track-MT3展现了优于MT3等基线方法的长时跟踪性能,与JPDA和MHT方法相比整体性能分别提高了6%和20%,能够有效挖掘时序信息,在复杂动态环境下实现稳定、鲁棒的多目标跟踪。

     

  • 图  1  Transformer编码器

    Figure  1.  Transformer encoder

    图  2  改进的Transformer解码器

    Figure  2.  Improved Transformer decoder

    图  3  Track-MT3模型架构示意图

    Figure  3.  Schematic diagram of Track-MT3 model architecture

    图  4  检测查询和跟踪查询示意图

    Figure  4.  Schematic diagram of detection query and track query

    图  5  查询变换与时间特征编码模块

    Figure  5.  Query transformation and temporal feature encoding module

    图  6  训练损失函数曲线

    Figure  6.  Training loss function curve

    图  7  一个滑动窗口下模型的输入和输出

    Figure  7.  Inputs and outputs of the model under a sliding window

    图  8  编码器输出数据分析可视化

    Figure  8.  Visualisation of the analysis of the encoder output data

    图  9  查询向量和编码器输出的注意力分数可视化

    Figure  9.  Attention score visualisation of query vectors and encoder outputs

    图  10  不同实验场景下的轨迹跟踪图

    Figure  10.  Trajectory tracking plots for different experimental scenarios

    图  11  不同实验场景下目标数量变化图

    Figure  11.  Variation of the number of targets in different experimental scenarios

    图  12  不同场景下评价指标对比

    Figure  12.  Comparison of evaluation indicators in different scenarios

    图  13  查询置信度阈值稳健性分析

    Figure  13.  Robustness analysis of query confidence threshold

    图  14  鲁棒性测试

    Figure  14.  Robustness test

    表  1  训练样本信息

    Table  1.   Training sample information

    参数数值
    总的样本数(有效量测点数)401651991
    真实目标量测点数81664937
    杂波量测点数319987054
    平均每个批次样本总数8034
    平均每个时间窗口样本总数252
    下载: 导出CSV

    表  2  实验环境

    Table  2.   Experimental environment

    项目版本
    CPU12th Gen Intel(R) Core i5-12400
    GPUNVIDIA GeForce RTX 3090 Ti
    Python3.7.4
    Pytorch1.6.0
    Torchvision0.7.0
    CUDA4.14.0
    下载: 导出CSV

    表  3  Track-MT3网络参数

    Table  3.   Track-MT3 network parameters

    参数取值
    编码器层数6
    解码器层数6
    编码器输入数据维度256
    解码器输入数据层数256
    多头注意力头数8
    查询向量数量16
    前馈网络隐藏层维度2048
    神经元Dropout0.1
    预测器MLP层数3
    预测器隐藏层维度128
    下载: 导出CSV

    表  4  模型训练参数

    Table  4.   Model training parameters

    参数取值
    优化器Adam
    Epoch数50000
    Batch Size32
    初始学习率0.0002
    学习率衰减容忍度5000
    学习率衰减因子0.5
    下载: 导出CSV

    表  5  不同仿真场景参数设置

    Table  5.   Parameter settings for different simulation scenarios

    场景 目标数量(个) 出生率 死亡率
    场景1 6 0.04 0.01
    场景2 6 0.08 0.02
    场景3 10 0.12 0.03
    下载: 导出CSV

    表  6  跟踪准确性对比

    Table  6.   Tracking accuracy comparison

    跟踪方法定位误差漏检误差虚警误差
    JPDA0.16290.62084.2812
    MHT0.60061.59213.8717
    Track-MT30.05882.36832.3708
    下载: 导出CSV

    表  7  计算效率对比

    Table  7.   Computational efficiency comparison

    跟踪方法单帧运行时间(s)平均内存占用(MB)
    JPDA0.0041169.6641
    MHT0.1714209.8398
    Track-MT30.0123253.6656
    下载: 导出CSV

    表  8  QTM消融实验

    Table  8.   QTM ablation experiment

    评价指标 Full No-QTM
    GOSPA (×10–1 m) 3.546362 4.760920
    Pro-GOSPA (×10–1 m) 1.340019 1.925471
    下载: 导出CSV

    表  9  实验参数设置

    Table  9.   Experimental parameter settings

    实验组 ${P_{\mathrm{D}}}$ ${\sigma _{\mathrm{q}}}$ ${\sigma _{\mathrm{r}}}$ ${\lambda _{\mathrm{c}}}$
    实验1 0.95 0.01 0.1 5
    实验2 0.90 0.02 0.9 10
    实验3 0.85 0.03 2.0 15
    下载: 导出CSV
  • [1] BAI Xianglong, LAN Hua, WANG Zengfu, et al. Robust multitarget tracking in interference environments: A message-passing approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 360–386. doi: 10.1109/TAES.2023.3323629.
    [2] YANG Jialin, JIANG Defu, TAO Jin, et al. A sector-matching probability hypothesis density filter for radar multiple target tracking[J]. Applied Sciences, 2023, 13(5): 2834. doi: 10.3390/app13052834.
    [3] HEM A G, BAERVELDT M, and BREKKE E F. PMBM filtering with fusion of target-provided and exteroceptive measurements: Applications to maritime point and extended object tracking[J]. IEEE Access, 2024, 12: 55404–55423. doi: 10.1109/ACCESS.2024.3389824.
    [4] CHEN Jiahui, GUO Shisheng, LUO Haolan, et al. Non-line-of-sight multi-target localization algorithm for driver-assistance radar system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 5332–5337. doi: 10.1109/TVT.2022.3227971.
    [5] HERZOG F, CHEN Junpeng, TEEPE T, et al. Synthehicle: Multi-vehicle multi-camera tracking in virtual cities[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops. Waikoloa, USA, 2023: 1–11. doi: 10.1109/WACVW58289.2023.00005.
    [6] RAKAI L, SONG Huansheng, SUN Shijie, et al. Data association in multiple object tracking: A survey of recent techniques[J]. Expert Systems with Applications, 2022, 192: 116300. doi: 10.1016/j.eswa.2021.116300.
    [7] LI Tiancheng, LIANG Haozhe, XIAO Bing, et al. Finite mixture modeling in time series: A survey of Bayesian filters and fusion approaches[J]. Information Fusion, 2023, 98: 101827. doi: 10.1016/j.inffus.2023.101827.
    [8] LIU Zongxiang, LUO Junwen, and ZHOU Chunmei. Multi-hypothesis marginal multi-target bayes filter for a heavy-tailed observation noise[J]. Remote Sensing, 2023, 15(21): 5258. doi: 10.3390/rs15215258.
    [9] QIU Changzhen, ZHANG Zhiyong, LU Huanzhang, et al. A survey of motion-based multitarget tracking methods[J]. Progress In Electromagnetics Research B, 2015, 62: 195–223. doi: 10.2528/PIERB15010503.
    [10] Vo B N and MA W K. The gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190.
    [11] Vo B T, Vo B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241.
    [12] Vo B T, Vo B N, and CANTONI A. The cardinality balanced multi-target multi-bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924.
    [13] Vo B N, Vo B T, and PHUNG D. Labeled random finite sets and the bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014.
    [14] GARCÍA-FERNÁNDEZ Á F, WILLIAMS J L, GRANSTRÖM K, et al. Poisson multi-Bernoulli mixture filter: Direct derivation and implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1883–1901. doi: 10.1109/TAES.2018.2805153.
    [15] CHONG C Y. An overview of machine learning methods for multiple target tracking[C]. 2021 IEEE 24th International Conference on Information Fusion, Sun City, South Africa, 2021: 1–9. doi: 10.23919/FUSION49465.2021.9627045.
    [16] JONDHALE S R and DESHPANDE R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks[J]. IEEE Sensors Journal, 2019, 19(1): 224–233. doi: 10.1109/JSEN.2018.2873357.
    [17] LIU Huajun, ZHANG Hui, and MERTZ C. DeepDA: LSTM-based deep data association network for multi-targets tracking in clutter[C]. 22th International Conference on Information Fusion, Ottawa, Canada, 2019: 1–8. doi: 10.23919/FUSION43075.2019.9011217.
    [18] BECKER P, PANDYA H, GEBHARDT G H W, et al. Recurrent Kalman networks: Factorized inference in high-dimensional deep feature spaces[C]. International Conference on Machine Learning, Long Beach, USA, 2019: 544–552. doi: 10.48550/arXiv.1905.07357.
    [19] SHI Zhuangwei. Incorporating Transformer and LSTM to Kalman filter with EM algorithm for state estimation[OL]. https://doi.org/10.48550/arXiv.2105.00250.
    [20] GAO Chang, YAN Junkun, ZHOU Shenghua, et al. Long short-term memory-based deep recurrent neural networks for target tracking[J]. Information Sciences, 2019, 502: 279–296. doi: 10.1016/j.ins.2019.06.039.
    [21] ZHANG Yongquan, SHI Zhenyun, JI Hongbing, et al. Online multi-target intelligent tracking using a deep long-short term memory network[J]. Chinese Journal of Aeronautics, 2023, 36(9): 313–329. doi: 10.1016/j.cja.2023.02.006.
    [22] LI Jing, LIANG Xinru, YUAN Shengzhi, et al. A strong maneuvering target-tracking filtering based on intelligent algorithm[J]. International Journal of Aerospace Engineering, 2024, 2024(1): 9981332. doi: 10.1155/2024/9981332.
    [23] EMAMBAKHSH M, BAY A, and VAZQUEZ E. Deep recurrent neural network for multi-target filtering[C]. MultiMedia Modeling: 25th International Conference, Thessaloniki, Greece, 2019: 519–531. doi: 10.1007/978-3-030-05716-9_42.
    [24] LIU Jingxian, WANG Zulin, and XU Mai. DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network[J]. Information Fusion, 2020, 53: 289–304. doi: 10.1016/j.inffus.2019.06.012.
    [25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All you Need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010.
    [26] ZENG Ailing, CHEN Muxi, ZHANG Lei, et al. Are transformers effective for time series forecasting?[C]. 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 11121–11128. doi: 10.1609/aaai.v37i9.26317.
    [27] PINTO J, HESS G, LJUNGBERGH W, et al. Next generation multitarget trackers: Random finite set methods vs transformer-based deep learning[C]. 2021 IEEE 24th International Conference on Information Fusion, Sun City, South Africa, 2021: 1–8. doi: 10.23919/FUSION49465.2021.9626990.
    [28] PINTO J, HESS G, LJUNGBERGH W, et al. Can deep learning be applied to model-based multi-object tracking?[OL]. https://doi.org/10.48550/arXiv.2202.07909.
    [29] MEINHARDT T, KIRILLOV A, LEAL-TAIXÉ L, et al. TrackFormer: Multi-object tracking with transformers[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8844–8854. doi: 10.1109/CVPR52688.2022.00864.
    [30] ZENG Fangao, DONG Bin, ZHANG Yuang, et al. MOTR: end-to-end multiple-object tracking with transformer[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 659–675. doi: 10.1007/978-3-031-19812-0_38.
    [31] WANG Qiang, LI Bei, XIAO Tong, et al. Learning deep transformer models for machine translation[C]. 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 1810–1822. doi: 10.18653/v1/P19-1176.
    [32] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]. 16th European conference on computer vision, Glasgow, UK, 2020: 213–229. doi: 10.1007/978-3-030-58452-8_13.
    [33] BEARD M, VO B T, and VO B N. Bayesian multi-target tracking with merged measurements using labelled random finite sets[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1433–1447. doi: 10.1109/TSP.2015.2393843.
    [34] RAHMATHULLAH A S, GARCÍA-FERNÁNDEZ Á F, and SVENSSON L. Generalized optimal sub-pattern assignment metric[C]. 2017 20th International Conference on Information Fusion, Xi’an, China, 2017: 1–8. doi: 10.23919/ICIF.2017.8009645.
  • 加载中
图(14) / 表(9)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  194
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2024-10-11
  • 网络出版日期:  2024-11-01
  • 刊出日期:  2024-12-28

目录

    /

    返回文章
    返回