基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计

刘德顺 夏德平 陈露 马艳峰

刘德顺, 夏德平, 陈露, 等. 基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计[J]. 雷达学报(中英文), 2024, 13(6): 1239–1251. doi: 10.12000/JR24140
引用本文: 刘德顺, 夏德平, 陈露, 等. 基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计[J]. 雷达学报(中英文), 2024, 13(6): 1239–1251. doi: 10.12000/JR24140
LIU Deshun, XIA Deping, CHEN Lu, et al. Joint design of LPI transmit waveform and receive beamforming based on neural networks for FDA-MIMO[J]. Journal of Radars, 2024, 13(6): 1239–1251. doi: 10.12000/JR24140
Citation: LIU Deshun, XIA Deping, CHEN Lu, et al. Joint design of LPI transmit waveform and receive beamforming based on neural networks for FDA-MIMO[J]. Journal of Radars, 2024, 13(6): 1239–1251. doi: 10.12000/JR24140

基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计

DOI: 10.12000/JR24140
基金项目: 国家部委基金
详细信息
    作者简介:

    刘德顺,硕士,助理工程师,主要研究方向为FDA-MIMO雷达抗干扰技术

    夏德平,博士,研究员,中国电科高级专家,主要研究方向为机载雷达系统设计和信号处理等

    陈 露,硕士生,主要研究方向为雷达抗干扰技术

    马艳峰,硕士,工程师,主要研究方向为雷达系统设计

    通讯作者:

    夏德平 xdp_14@hotmail.com

  • 责任主编:许京伟 Corresponding Editor: XU Jingwei
  • 中图分类号: TN958

Joint Design of LPI Transmit Waveform and Receive Beamforming Based on Neural Networks for FDA-MIMO

Funds: The National Ministries Foundation
More Information
  • 摘要: 针对传统相控阵或多输入多输出(MIMO)体制的低截获概率(LPI)阵列雷达仅能控制特定角度的辐射能量,而无法实现特定区域(距离、角度)能量控制的问题,该文提出一种基于神经网络的频控阵-多输入多输出(FDA-MIMO)雷达低截获概率发射波形设计方法。该方法通过对FDA-MIMO雷达的发射波形和接收波束形成联合设计,在确保雷达对目标检测概率的情况下,将雷达辐射能量均匀地分散到空域当中,并尽可能降低辐射到目标位置的能量,从而减小雷达信号被截获的概率。首先,建立了最小化方向图匹配误差准则下LPI性能发射波形设计和接收波束形成的优化目标函数;然后,将目标函数作为神经网络的损失函数;最后,通过迭代训练最小化神经网络的损失函数,直至网络收敛,求解出发射信号波形和对应的接收加权矢量。仿真结果表明,该文所提方法能更好地控制雷达功率分布,相比于传统算法,控制发射方向图非目标区域的波束能量分布方面有5 dB的改善;此外,在接收端形成的接收方向图波束能量也更为集中,且在多个干扰位置均产生了–50 dB以下的零陷,具有很好的干扰抑制效果。

     

  • 图  1  FDA-MIMO雷达结构示意图

    Figure  1.  Structure diagram of FDA-MIMO radar

    图  2  多通道混频结合低通滤波的接收框架

    Figure  2.  Multi-channel mixing combined with low pass filtering receiver framework

    图  3  基于ResNet的优化框架

    Figure  3.  Optimization framework based on ResNet

    图  4  残差神经网络结构

    Figure  4.  Residual neural network architecture

    图  5  残差块

    Figure  5.  Residual block

    图  6  网络收敛性分析

    Figure  6.  Network convergence analysis

    图  7  波形特性分析

    Figure  7.  Waveform characteristics analysis

    图  8  等效距离-角度发射方向图

    Figure  8.  Equivalent range-angle transmit beampattern

    图  9  等效距离-角度发射方向图剖面

    Figure  9.  Equivalent range-angle transmit beampattern profiles

    图  10  距离-角度接收方向图

    Figure  10.  Range-angle receive beampattern

    图  11  距离-角度接收方向图剖面

    Figure  11.  Range-angle receive beampattern profiles

    图  12  距离-角度发射方向图

    Figure  12.  Range-angle transmit beampattern

    图  13  距离-角度发射方向图剖面

    Figure  13.  Range-angle transmit beampattern profiles

    图  14  多目标距离-角度接收方向图

    Figure  14.  Multi-target range-angle receive beampattern

    图  15  多目标距离-角度接收方向图剖面

    Figure  15.  Multi-target range-angle receive beampattern profiles

    1  基于ResNet的优化算法伪代码

    1.   Pseudocode for optimization algorithm based on ResNet

     1. ResNet I训练
     网络输入:随机噪声矩阵
     while未达到最大迭代次数or网络未收敛do
      根据网络输出计算损失函数:
      $ \mathcal{L}_{1}(\boldsymbol{S}) \leftarrow\left\{\operatorname{Re}\left(\boldsymbol{S}^{\mathrm{H}} {\boldsymbol{a}}(r, \theta)\right), \operatorname{Im}\left(\boldsymbol{S}^{\mathrm{H}} {\boldsymbol{a}}(r, \theta)\right)\right\} $
      $ \leftarrow\{\operatorname{Re}(\boldsymbol{S}), \operatorname{Im}(\boldsymbol{S})\} \leftarrow \boldsymbol{x}_{\text {outI }} $
      使用自适应优化算法(Adaptive Moment Estimation, Adam)
      更新网络参数
     end while
     输出波形$ {\boldsymbol{s}} $
      $ {{\boldsymbol{s}}}=\operatorname{vec}(\boldsymbol{S})={\mathrm{e}}^{{\mathrm{j}} {\boldsymbol{x}}_{{\mathrm{outI}}}} $
     2. ResNet II训练
     网络输入:随机噪声矩阵
     while未达到最大迭代次数or网络未收敛do
      根据网络输出计算损失函数:
      ${\mathcal{L}}_{{\mathrm{II}}}({\boldsymbol{w}}) \leftarrow \left\{ {\mathrm{Re}}\left({\boldsymbol{w}}^{\mathrm{H}}\tilde {\boldsymbol{S}} {\boldsymbol{v}}(r,\theta) \right),\;{\mathrm{Im}}\left({\boldsymbol{w}}^{\mathrm{H}}\tilde {\boldsymbol{S}}{\boldsymbol{v}}(r,\theta) \right)\right\} $
      $\leftarrow {\boldsymbol{x}}_{{\mathrm{outII}}} $
      使用自适应优化算法Adam更新网络参数
     end while
     输出接收加权矢量w
      ${\boldsymbol{w}}={\boldsymbol{x}}_{{\mathrm{outII}}}(1:NL)+{\mathrm{j}} {\boldsymbol{x}}_{{\mathrm{outII}}} (NL+1:2NL)$
    下载: 导出CSV

    表  1  仿真参数设置

    Table  1.   Simulation parameter setting

    参数名称 符号 数值
    发射阵元数 $ M $ $ 10 $
    接收阵元数 $ N $ $ 10 $
    发射波形样本数 $ L $ $ 8 $
    参考载频 $ f_{0} $ $ \text { 10 GHz } $
    频偏增量 $ \Delta f $ $ 3 \;\mathrm{kHz} $
    带宽 $ { B } $ $ 3\; \mathrm{kHz} $
    光速 $ \rm{c} $ $ 3 \times 10^{8} \;\mathrm{m} / \mathrm{s} $
    阵元间距 $ d $ $ {\mathrm{c}} /\left(2 f_{0}\right) $
    距离观测范围 $ r$ $ [0: 0.1: 100] \;\mathrm{km} $
    角度观测范围 $ \theta $ $ \left[-90^{\circ}: 0.5^{\circ}: 90^{\circ}\right] $
    目标权重 $ \omega_{k} $ $ 1 $
    旁瓣区域权重 $ \omega_{p, q} $ $ 1 $
    干扰区域权重 $ \omega_{i} $ $ 1 $
    方向图主瓣调节参数 $ \mu $ $ 4 $
    下载: 导出CSV
  • [1] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. The 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–217. doi: 10.1109/RADAR.2006.1631800.
    [2] WANG Wenqin. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001–1012. doi: 10.1049/iet-rsn.2015.0464.
    [3] 朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188.

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188.
    [4] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
    [5] 王文钦, 张顺生. 频控阵雷达技术研究进展综述[J]. 雷达学报, 2022, 11(5): 830–849. doi: 10.12000/JR22141.

    WANG Wenqin and ZHANG Shunsheng. Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11(5): 830–849. doi: 10.12000/JR22141.
    [6] CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Accurate models of time-invariant beampatterns for frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3022–3029. doi: 10.1109/TAP.2019.2896712.
    [7] TAN Ming, WANG Chunyang, and LI Zhihui. Correction analysis of frequency diverse array radar about time[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 834–847. doi: 10.1109/TAP.2020.3016508.
    [8] SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099.
    [9] ZHONG Tiantian, TAO Haihong, CAO Han, et al. Multiparameter estimation for monostatic FDA-MIMO radar with polarimetric antenna[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(3): 2524–2539. doi: 10.1109/TAP.2024.3353345.
    [10] 张顺生, 刘美慧, 王文钦. 基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测[J]. 雷达学报, 2022, 11(4): 666–675. doi: 10.12000/JR22042.

    ZHANG Shunsheng, LIU Meihui, and WANG Wenqin. FDA-MIMO radar moving target detection based on Doppler spread compensation[J]. Journal of Radars, 2022, 11(4): 666–675. doi: 10.12000/JR22042.
    [11] BASIT A, WANG Wenqin, NUSENU S Y, et al. Cognitive FDA-MIMO with channel uncertainty information for target tracking[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 963–975. doi: 10.1109/TCCN.2019.2928799.
    [12] LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485.
    [13] ZHU Jingjing, ZHU Shengqi, XU Jingwei, et al. Discrimination of target and mainlobe jammers with FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2023, 30: 583–587. doi: 10.1109/LSP.2023.3276630.
    [14] 林洋, 张顺生, 王文钦. FDA-MIMO雷达主瓣距离模糊杂波抑制方法[J]. 信号处理, 2020, 36(1): 84–92. doi: 10.16798/j.issn.1003-0530.2020.01.011.

    LIN Yang, ZHANG Shunsheng, and WANG Wenqin. Main-beam range-ambiguous clutter suppression method with FDA-MIMO radar[J]. Journal of Signal Processing, 2020, 36(1): 84–92. doi: 10.16798/j.issn.1003-0530.2020.01.011.
    [15] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/ACCESS.2018.2850816.
    [16] CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Transmit beamforming based on 4-D antenna arrays for low probability of intercept systems[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 3625–3634. doi: 10.1109/TAP.2019.2963593.
    [17] 万环, 余显祥, 全智, 等. 基于交替方向惩罚法的低精度量化MIMO雷达恒模波形设计方法[J]. 雷达学报, 2022, 11(4): 557–569. doi: 10.12000/JR22072.

    WAN Huan, YU Xianxiang, QUAN Zhi, et al. Constant modulus waveform design for low-resolution quantization MIMO radar based on an alternating direction penalty method[J]. Journal of Radars, 2022, 11(4): 557–569. doi: 10.12000/JR22072.
    [18] HE Qin, HE Zishu, WANG Zhihang, et al. Co-design of transmit-receive weights for MIMO system with LPI and multi-targets[J]. IEEE Communications Letters, 2022, 26(8): 1863–1867. doi: 10.1109/LCOMM.2022.3176011.
    [19] DENG Hai. Waveform design for MIMO radar with low probability of intercept (LPI) property[C]. 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, USA, 2011: 305–308. doi: 10.1109/APS.2011.5996703.
    [20] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept-based distributed MIMO radar waveform design against barrage jamming in signal-dependent clutter and coloured noise[J]. IET Signal Processing, 2019, 13(4): 415–423. doi: 10.1049/iet-spr.2018.5212.
    [21] WANG Liu, WANG Wenqin, GUAN Haoliang, et al. LPI property of FDA transmitted signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3905–3915. doi: 10.1109/TAES.2021.3083402.
    [22] XIONG Jie, WANG Wenqin, CUI Can, et al. Cognitive FDA-MIMO radar for LPI transmit beamforming[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1574–1580. doi: 10.1049/iet-rsn.2016.0551.
    [23] GONG Pengcheng, JIANG Panke, and WU Yuntao. Transmit beamforming design for LPI of frequency diverse array MIMO radar[C]. 2021 CIE International Conference on Radar, Haikou, China, 2021: 1910–1913. doi: 10.1109/Radar53847.2021.10028350.
    [24] GONG Pengcheng, ZHANG Zhuoyu, WU Yuntao, et al. Joint design of transmit waveform and receive beamforming for LPI FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2022, 29: 1938–1942. doi: 10.1109/LSP.2022.3205206.
    [25] ZHANG Weijian, HU Jinfeng, WEI Zhiyong, et al. Constant modulus waveform design for MIMO radar transmit beampattern with residual network[J]. Signal Processing, 2020, 177: 107735. doi: 10.1016/j.sigpro.2020.107735.
    [26] SALLAM T, ABDEL-RAHMAN A B, ALGHONIEMY M, et al. A neural-network-based beamformer for phased array weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5095–5104. doi: 10.1109/TGRS.2016.2554116.
    [27] ZHAO Zhonghui, ZHAO Huiling, WANG Zhaoping, et al. Radial basis function neural network optimal modeling for phase-only array pattern nulling[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7971–7975. doi: 10.1109/TAP.2021.3083787.
    [28] 丁梓航, 谢军伟, 王博. 基于深度学习的FDA-MIMO雷达协方差矩阵缺失数据恢复方法[J]. 雷达学报, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002.

    DING Zihang, XIE Junwei, and WANG Bo. Missing covariance matrix recovery with the FDA-MIMO radar using deep learning method[J]. Journal of Radars, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002.
    [29] SALLAM T and ATTIYA A M. Convolutional neural network for 2D adaptive beamforming of phased array antennas with robustness to array imperfections[J]. International Journal of Microwave and Wireless Technologies, 2021, 13(10): 1096–1102. doi: 10.1017/S1759078721001070.
    [30] WU Yue, CHEN Yinpeng, YUAN Lu, et al. Rethinking classification and localization for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10183–10192. doi: 10.1109/CVPR42600.2020.01020.
    [31] JIA Wenkai, JAKOBSSON A, and WANG Wenqin. Designing FDA radars robust to contaminated shared spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2861–2873. doi: 10.1109/TAES.2022.3221030.
    [32] CHENG Ziyang, HE Zishu, ZHANG Shengmiao, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912–4923. doi: 10.1109/TSP.2017.2718976.
    [33] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  180
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-09-07
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2024-12-28

目录

    /

    返回文章
    返回