Loading [MathJax]/extensions/TeX/boldsymbol.js

基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计

刘德顺 夏德平 陈露 马艳峰

张凌志, 刘飞峰, 胡程. 基于导航卫星的干涉SAR数据采集策略优选方法分析[J]. 雷达学报, 2019, 8(5): 624–630. doi: 10.12000/JR19065
引用本文: 刘德顺, 夏德平, 陈露, 等. 基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计[J]. 雷达学报(中英文), 2024, 13(6): 1239–1251. doi: 10.12000/JR24140
ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065
Citation: LIU Deshun, XIA Deping, CHEN Lu, et al. Joint design of LPI transmit waveform and receive beamforming based on neural networks for FDA-MIMO[J]. Journal of Radars, 2024, 13(6): 1239–1251. doi: 10.12000/JR24140

基于神经网络的FDA-MIMO低截获发射波形和接收波束形成联合设计

DOI: 10.12000/JR24140 CSTR: 32380.14.JR24140
基金项目: 国家部委基金
详细信息
    作者简介:

    刘德顺,硕士,助理工程师,主要研究方向为FDA-MIMO雷达抗干扰技术

    夏德平,博士,研究员,中国电科高级专家,主要研究方向为机载雷达系统设计和信号处理等

    陈 露,硕士生,主要研究方向为雷达抗干扰技术

    马艳峰,硕士,工程师,主要研究方向为雷达系统设计

    通讯作者:

    夏德平 xdp_14@hotmail.com

  • 责任主编:许京伟 Corresponding Editor: XU Jingwei
  • 中图分类号: TN958

Joint Design of LPI Transmit Waveform and Receive Beamforming Based on Neural Networks for FDA-MIMO

Funds: The National Ministries Foundation
More Information
  • 摘要: 针对传统相控阵或多输入多输出(MIMO)体制的低截获概率(LPI)阵列雷达仅能控制特定角度的辐射能量,而无法实现特定区域(距离、角度)能量控制的问题,该文提出一种基于神经网络的频控阵-多输入多输出(FDA-MIMO)雷达低截获概率发射波形设计方法。该方法通过对FDA-MIMO雷达的发射波形和接收波束形成联合设计,在确保雷达对目标检测概率的情况下,将雷达辐射能量均匀地分散到空域当中,并尽可能降低辐射到目标位置的能量,从而减小雷达信号被截获的概率。首先,建立了最小化方向图匹配误差准则下LPI性能发射波形设计和接收波束形成的优化目标函数;然后,将目标函数作为神经网络的损失函数;最后,通过迭代训练最小化神经网络的损失函数,直至网络收敛,求解出发射信号波形和对应的接收加权矢量。仿真结果表明,该文所提方法能更好地控制雷达功率分布,相比于传统算法,控制发射方向图非目标区域的波束能量分布方面有5 dB的改善;此外,在接收端形成的接收方向图波束能量也更为集中,且在多个干扰位置均产生了–50 dB以下的零陷,具有很好的干扰抑制效果。

     

  • 基于导航卫星的双基地SAR(Bistatic Synthetic Aperture Radar based on Global Navigation Satellite System, GNSS-BSAR)是空-地双基地SAR中一种典型的应用[1],使用在轨的导航卫星作为发射源,地面部署接收机(地基、车载、机载)构成双基地SAR系统[2]。由于导航星座的日趋完善,其全球覆盖性以及重轨特性所带来的优势是其他照射源暂时所不能替代的,其中以地基接收机为主的导航卫星干涉合成孔径雷达(Interference Synthetic Aperture Radar based on the Global Navigation Satellite System, GNSS-InSAR)在场景形变监测领域有着广阔的应用前景[3],成为了近年来研究热点。

    在GNSS-BSAR系统成像方面,已有研究者分别使用不同的导航卫星星座进行了成像验证,包括了北斗[4,5]、GPS[6]、格洛纳斯[7]、伽利略[8]。除此以外文献[9]还提出了多角度融合方法以增强图像信噪比。在形变监测方面,来自伯明翰大学的学者们[10]使用直达波天线,配合长约50 m的线缆构建了理想点目标,并使用格洛纳斯作为发射源,首次实现了精度约为1 cm的1维形变反演结果。该实验初步验证了GNSS-InSAR应用于形变监测的可行性。为了进一步验证场景形变监测的可能,2017年文献[11]通过对接收机进行高精度移位来模拟场景建筑形变,成功反演出了形变,精度约为1 cm。在3维形变方面,2018年北京理工大学的技术团队[12]通过人为构建转发器,进行了精度可控的强点目标形变模拟,使用我国的北斗IGSO卫星,成功实现了精度优于5 mm的3维形变反演,这些验证性实验充分表明了GNSS-InSAR应用于场景形变检测的可能。

    若要实现GNSS-InSAR场景的3维形变反演,需要同时至少3颗卫星从不同角度照射场景。由于GNSS-InSAR系统的拓扑高度非对称性以及导航信号的窄带特性[13],加上导航卫星的重轨并非是严格意义上的重轨,除了不可避免的空间基线外,重轨时间也并非严格一致,因此在实际数据采集中,需要对系统构型以及数据采集时间进行严格的优化设计。文献[14]提出了一种联合优化方法,解决了面向大场景下的多星多角度构型优化问题,配合多个接收机实现综合分辨性能优异的大场景成像。文献[15]提出了空间去相干的理论描述框架,表明了空间去相干在GNSS-InSAR中的必要性,但未对数据采集时间进行说明。从当前实际情况出发,不精确的数据采集时间可能会造成存储资源浪费,空间去相干导致的数据截取进一步降低了数据有效性。具体如图1所示:

    图  1  数据截取与有效数据示意图
    Figure  1.  Effective data interception diagram

    针对上述问题,本文提出了一种GNSS-InSAR场景连续数据采集优化方法,通过结合当前数据的卫星轨迹和两行星历数据文件(STK Two-Line Element sets, TLE)预测轨迹,基于相干系数轨迹对齐,获取卫星重轨时间间隔,得到最优的数据采集策略,从源头上降低数据的空间去相干性,提升所采集数据有效性,节约存储资源。在第2部分对GNSS-InSAR场景数据采集优化方法进行了详细介绍。第3部分针对提出的方法进行了实验设计,开展了实测数据采集,并针对采集的数据进行了初步分析。第4部分对全文进行总结。

    对于GNSS-InSAR图像而言,经过保相成像处理后,场景中任意一点(x0,y0)的像素信息分别对应分辨单元内所有散射体回波的相参叠加,可建模为

    s(x0,y0)=f(x,y;t)exp[j2πλr(x,y;P)]W(xx0,yy0;P)dxdy+n(x0,y0;t) (1)

    其中,f(x,y;t)为时间t下的地表散射系数,P为对应的合成孔径中心位置矢量,W(x,y;P)表示系统的点扩散函数(PSF), n(x,y;t)为图像的加性噪声。对于SAR图像的同名点像素,其相干系数可表示为[16]

    ρ=sm(x0,y0)ss(x0,y0)dxdysm(x0,y0)sm(x0,y0)dxdyss(x0,y0)ss(x0,y0)dxdy (2)

    其中,下标m表示主图像,s表示辅图像。根据柯西不等式可以判断:0ρ1,当ρ=0时表示同名点完全不相干,当ρ=1时,同名点完全相干。

    将点目标像素模型式(1)带入到式(2)并化简得到

    ρ=sav(x,y)exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(sm(x,y)exp[j2πλr(x,y;Pm)]|W(xx0,yy0;Pm)|2dxdy+nm)×(ss(x,y)exp[+j2πλr(x,y;Ps)]|W(xx0,yy0;Pm)|2dxdy+ns) (3)

    式(3)的推导使用了如下近似:

    (1) 由于导航卫星的高轨道特性,使得W(xx0,yy0;Pm)W(xx0,yy0;Ps)成立;

    (2) 相邻两天的噪声相干系数为0,即

    n(x0,y0;tm)×n(x0,y0;ts)=0 (4)

    (3) 相邻两天的目标散射系数为sav(x,y),即

    sav(x,y)f(x,y;tm)f(x,y;ts) (5)

    对式(3)中的相干系数ρ进一步分解得到

    ρ=ρth×ρti×ρsp (6)

    其中,热噪声相干系数ρth与时间相干系数ρti分别由系统与实际目标决定。

    对于PS点[17]而言,地表散射系数相对稳定,不随时间变化,同时为了便于后续分析,假定散射系数为1得到空间相干系数ρsp的简化式为

    ρsp=exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(|W(xx0,yy0;Pm)|2dxdy)(|W(xx0,yy0;Pm)|2dxdy) (7)

    从式(7)推导结果可以知道,空间基线主要是影响r(x,y;P)从而导致空间去相干。

    导航卫星的重轨时间并非稳定不变,因此需要对数据采集时间进行有效预测,从源头上降低空间去相干,提高数据有效性。

    假定主图像数据采集时间为tm,该采集时间可以通过文献[14]中的广义优化模型进行求解,辅图像数据采集时间为ts=tm+Δt, Δt为时间间隔,那么最优化数据采集模型可通过式(7)推导而来

    Δt=argmax{|˜W(x,y;Pm)|2exp[j2πλ(r(x,y;Pm)r(x,y;P(tm+Δt)))]dxdy} (8)

    其中,˜W(x,y;Pm)tm下等效归一化PSF, P(tm+Δt)Δt时间偏置下得合成孔径中心位置矢量。

    第1天数据采集需要进行实验设计以确定最优数据采集时刻,往后的重轨天数据采集可以根据数据采集优化模型,同时结合星历文件进行预测。整体的预测流程如图2所示,n为任意一天采集的数据,k为重轨天数间隔。

    图  2  GNSS-InSAR数据采集时间优化流程
    Figure  2.  Time optimization process of GNSS-InSAR data acquisition

    实际卫星位置对应的实际时间设为tn,经过模型优化得到的时间偏差为Δt,那么第n+k天对应的实际数据采集时间可表示为

    tn+k=tn+Δt (9)

    对于固定场景的形变监测,首次数据采集的时候需要严格设计系统构型,使分辨率达到最优化。本次实验接收机部署在北京理工大学信息科学试验楼楼顶西北角,实施监测场景位于西偏北30°。使用理论分辨率计算公式[18]对该场景进行分辨率设计。仿真参数具体参见表1

    表  1  数据采集试验仿真参数
    Table  1.  Data acquisition test simulation parameters
    参数
    照射源北斗 IGSO1~5
    PRF1000 Hz
    带宽10.23 MHz
    合成孔径时间600 s
    TLE文件更新日期2019年4月29日
    预定数据采集日期2019年4月30日
    下载: 导出CSV 
    | 显示表格

    以分辨单元面积作为判定依据,得到预定采集日期当天全时段下各个卫星在预定场景下所能得到的分辨单元面积如图3所示。

    图  3  全时段下场景分辨单元面积
    Figure  3.  Scene resolution unit area in full time

    为了实现3维形变反演,需要同一时间下有3颗卫星对场景进行照射。图3中10点前后与17点前后满足当前场景上空有3颗IGSO卫星可见的条件。更进一步,为了使分辨单元面积达到最优,可以得到具体的数据采集时间。具体如图4红框标注,分别是9点30分前后与17点30分前后。

    图  4  首次数据采集时间设计结果
    Figure  4.  Design results of first data acquisition time

    为了配合实验,在场景布置转发器,整体的系统构型如图5所示。

    图  5  GNSS-InSAR场景3维形变反演实验拓扑构型设计结果
    Figure  5.  GNSS-InSAR topological configuration design results of 3D deformation retrieval experiment

    以2019年4月30日采集的实测数据作为第n天数据,对于北斗的IGSO而言,重轨时间约为1天,即m=1,同时下载当天最新的TLE文件。以IGSO1为例,结合图2进行详细说明:

    (1) 使用实测数据的直达波进行卫星位置解算,同时根据TLE文件推算当天和相邻天的卫星轨迹。经过相干系数轨迹匹配之后,得到的轨迹如图6所示。

    图  6  对齐后的TLE卫星轨迹与实测数据卫星轨迹
    Figure  6.  Aligned TLE satellite trajectory and measured data satellite trajectory

    (2) 以匹配得到的TLE卫星轨迹作为参考,对重轨天的TLE卫星轨迹进行数据采集优化模型求解,系统的PSF与优化模型仿真结果分别如图7图8所示。

    图  7  场景[–147, 20, 0]处理论PSF
    Figure  7.  Theoretical PSF in scene at position of [–147, 20, 0]
    图  8  数据采集优化模型仿真结果
    Figure  8.  Simulation results of data acquisition optimization model

    图8的结果分析可知,第1个峰值点为其本身,由于空间基线为0,相干系数为1。第2个峰值点相干系数为0.999644,满足除了第1个峰值点外相邻天相干系数最大值条件,因此第2个峰值点就是最佳重轨时的空间相干系数。此时经过模型优化得到的时间间隔为:Δt=86163s=23h56min3s,结合第1天的实测数据轨迹对应的时间t1=9h26min0s,第2天准确的数据采集时间为:t2=9h22min3s

    为了说明优化结果的正确性,在实验场景中放置转发器模拟理想点目标(图5),同时按照优化后的时间进行5月1日数据采集。实际采集时间为9h21min53s,总采集时间约650 s。相邻两天的空间相干系数轨迹匹配结果如图9所示。

    图  9  实测数据重轨空间相干系数
    Figure  9.  The spatial coherence coefficient of measured data

    图9中峰值点位置来看,重轨数据采集优化模型得到的结果和实际结果相吻合。为了进一步说明,图10给出了IGSO1卫星实测数据成像结果。

    图  10  场景成像结果
    Figure  10.  Imaging results of scene

    对相邻两天的图像相干系数进行求解,得到图11所示结果。在同一坐标系下,仿真目标位于[–147, 20, 0],空间相干系数为0.999644;转发器位于[–147, 20, 0],相干系数为0.9996;两者的相干系数基本保持一致。

    图  11  相干系数结果
    Figure  11.  Coherence coefficient result

    图9图10的结果表明经过数据采集优化模型后得到的时间间隔与实际卫星轨迹的重轨时间相互吻合,在保证600 s预期合成孔径时间下,可以最大限度减少数据采集时间,节约存储资源。同时避免后期由于数据对齐带来的数据有效性降低问题。

    在GNSS-InSAR场景1维/3维形变反演应用中,针对由于导航卫星重轨时间的非严格一致性与有效数据截取带来的数据冗余,数据有效性低等问题,本文提出了一种面向GNSS-InSAR场景数据采集的优化模型,采用实测数据与TLE文件相结合,根据当天数据采集时间,预测相邻天重轨时间,从而实现精确的数据采集。实测数据验证结果表明了数据采集时间优化模型的正确性。该方法的提出有利于GNSS-InSAR场景1维/3维形变反演实验的开展,在降低原始数据冗余度基础上,保证了有效数据时间长度大于预期合成孔径时间。

  • 图  1  FDA-MIMO雷达结构示意图

    Figure  1.  Structure diagram of FDA-MIMO radar

    图  2  多通道混频结合低通滤波的接收框架

    Figure  2.  Multi-channel mixing combined with low pass filtering receiver framework

    图  3  基于ResNet的优化框架

    Figure  3.  Optimization framework based on ResNet

    图  4  残差神经网络结构

    Figure  4.  Residual neural network architecture

    图  5  残差块

    Figure  5.  Residual block

    图  6  网络收敛性分析

    Figure  6.  Network convergence analysis

    图  7  波形特性分析

    Figure  7.  Waveform characteristics analysis

    图  8  等效距离-角度发射方向图

    Figure  8.  Equivalent range-angle transmit beampattern

    图  9  等效距离-角度发射方向图剖面

    Figure  9.  Equivalent range-angle transmit beampattern profiles

    图  10  距离-角度接收方向图

    Figure  10.  Range-angle receive beampattern

    图  11  距离-角度接收方向图剖面

    Figure  11.  Range-angle receive beampattern profiles

    图  12  距离-角度发射方向图

    Figure  12.  Range-angle transmit beampattern

    图  13  距离-角度发射方向图剖面

    Figure  13.  Range-angle transmit beampattern profiles

    图  14  多目标距离-角度接收方向图

    Figure  14.  Multi-target range-angle receive beampattern

    图  15  多目标距离-角度接收方向图剖面

    Figure  15.  Multi-target range-angle receive beampattern profiles

    1  基于ResNet的优化算法伪代码

    1.   Pseudocode for optimization algorithm based on ResNet

     1. ResNet I训练
     网络输入:随机噪声矩阵
     while未达到最大迭代次数or网络未收敛do
      根据网络输出计算损失函数:
       \mathcal{L}_{1}(\boldsymbol{S}) \leftarrow\left\{\operatorname{Re}\left(\boldsymbol{S}^{\mathrm{H}} {\boldsymbol{a}}(r, \theta)\right), \operatorname{Im}\left(\boldsymbol{S}^{\mathrm{H}} {\boldsymbol{a}}(r, \theta)\right)\right\}
       \leftarrow\{\operatorname{Re}(\boldsymbol{S}), \operatorname{Im}(\boldsymbol{S})\} \leftarrow \boldsymbol{x}_{\text {outI }}
      使用自适应优化算法(Adaptive Moment Estimation, Adam)
      更新网络参数
     end while
     输出波形 {\boldsymbol{s}}
       {{\boldsymbol{s}}}=\operatorname{vec}(\boldsymbol{S})={\mathrm{e}}^{{\mathrm{j}} {\boldsymbol{x}}_{{\mathrm{outI}}}}
     2. ResNet II训练
     网络输入:随机噪声矩阵
     while未达到最大迭代次数or网络未收敛do
      根据网络输出计算损失函数:
      {\mathcal{L}}_{{\mathrm{II}}}({\boldsymbol{w}}) \leftarrow \left\{ {\mathrm{Re}}\left({\boldsymbol{w}}^{\mathrm{H}}\tilde {\boldsymbol{S}} {\boldsymbol{v}}(r,\theta) \right),\;{\mathrm{Im}}\left({\boldsymbol{w}}^{\mathrm{H}}\tilde {\boldsymbol{S}}{\boldsymbol{v}}(r,\theta) \right)\right\}
      \leftarrow {\boldsymbol{x}}_{{\mathrm{outII}}}
      使用自适应优化算法Adam更新网络参数
     end while
     输出接收加权矢量w
      {\boldsymbol{w}}={\boldsymbol{x}}_{{\mathrm{outII}}}(1:NL)+{\mathrm{j}} {\boldsymbol{x}}_{{\mathrm{outII}}} (NL+1:2NL)
    下载: 导出CSV

    表  1  仿真参数设置

    Table  1.   Simulation parameter setting

    参数名称 符号 数值
    发射阵元数 M 10
    接收阵元数 N 10
    发射波形样本数 L 8
    参考载频 f_{0} \text { 10 GHz }
    频偏增量 \Delta f 3 \;\mathrm{kHz}
    带宽 { B } 3\; \mathrm{kHz}
    光速 \rm{c} 3 \times 10^{8} \;\mathrm{m} / \mathrm{s}
    阵元间距 d {\mathrm{c}} /\left(2 f_{0}\right)
    距离观测范围 r [0: 0.1: 100] \;\mathrm{km}
    角度观测范围 \theta \left[-90^{\circ}: 0.5^{\circ}: 90^{\circ}\right]
    目标权重 \omega_{k} 1
    旁瓣区域权重 \omega_{p, q} 1
    干扰区域权重 \omega_{i} 1
    方向图主瓣调节参数 \mu 4
    下载: 导出CSV
  • [1] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. The 2006 IEEE Conference on Radar, Verona, USA, 2006: 215–217. doi: 10.1109/RADAR.2006.1631800.
    [2] WANG Wenqin. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001–1012. doi: 10.1049/iet-rsn.2015.0464.
    [3] 朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188.

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188.
    [4] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
    [5] 王文钦, 张顺生. 频控阵雷达技术研究进展综述[J]. 雷达学报, 2022, 11(5): 830–849. doi: 10.12000/JR22141.

    WANG Wenqin and ZHANG Shunsheng. Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11(5): 830–849. doi: 10.12000/JR22141.
    [6] CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Accurate models of time-invariant beampatterns for frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3022–3029. doi: 10.1109/TAP.2019.2896712.
    [7] TAN Ming, WANG Chunyang, and LI Zhihui. Correction analysis of frequency diverse array radar about time[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 834–847. doi: 10.1109/TAP.2020.3016508.
    [8] SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099.
    [9] ZHONG Tiantian, TAO Haihong, CAO Han, et al. Multiparameter estimation for monostatic FDA-MIMO radar with polarimetric antenna[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(3): 2524–2539. doi: 10.1109/TAP.2024.3353345.
    [10] 张顺生, 刘美慧, 王文钦. 基于多普勒扩展补偿的FDA-MIMO雷达运动目标检测[J]. 雷达学报, 2022, 11(4): 666–675. doi: 10.12000/JR22042.

    ZHANG Shunsheng, LIU Meihui, and WANG Wenqin. FDA-MIMO radar moving target detection based on Doppler spread compensation[J]. Journal of Radars, 2022, 11(4): 666–675. doi: 10.12000/JR22042.
    [11] BASIT A, WANG Wenqin, NUSENU S Y, et al. Cognitive FDA-MIMO with channel uncertainty information for target tracking[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 963–975. doi: 10.1109/TCCN.2019.2928799.
    [12] LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485.
    [13] ZHU Jingjing, ZHU Shengqi, XU Jingwei, et al. Discrimination of target and mainlobe jammers with FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2023, 30: 583–587. doi: 10.1109/LSP.2023.3276630.
    [14] 林洋, 张顺生, 王文钦. FDA-MIMO雷达主瓣距离模糊杂波抑制方法[J]. 信号处理, 2020, 36(1): 84–92. doi: 10.16798/j.issn.1003-0530.2020.01.011.

    LIN Yang, ZHANG Shunsheng, and WANG Wenqin. Main-beam range-ambiguous clutter suppression method with FDA-MIMO radar[J]. Journal of Signal Processing, 2020, 36(1): 84–92. doi: 10.16798/j.issn.1003-0530.2020.01.011.
    [15] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/ACCESS.2018.2850816.
    [16] CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Transmit beamforming based on 4-D antenna arrays for low probability of intercept systems[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(5): 3625–3634. doi: 10.1109/TAP.2019.2963593.
    [17] 万环, 余显祥, 全智, 等. 基于交替方向惩罚法的低精度量化MIMO雷达恒模波形设计方法[J]. 雷达学报, 2022, 11(4): 557–569. doi: 10.12000/JR22072.

    WAN Huan, YU Xianxiang, QUAN Zhi, et al. Constant modulus waveform design for low-resolution quantization MIMO radar based on an alternating direction penalty method[J]. Journal of Radars, 2022, 11(4): 557–569. doi: 10.12000/JR22072.
    [18] HE Qin, HE Zishu, WANG Zhihang, et al. Co-design of transmit-receive weights for MIMO system with LPI and multi-targets[J]. IEEE Communications Letters, 2022, 26(8): 1863–1867. doi: 10.1109/LCOMM.2022.3176011.
    [19] DENG Hai. Waveform design for MIMO radar with low probability of intercept (LPI) property[C]. 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, USA, 2011: 305–308. doi: 10.1109/APS.2011.5996703.
    [20] SHI Chenguang, WANG Fei, SELLATHURAI M, et al. Low probability of intercept-based distributed MIMO radar waveform design against barrage jamming in signal-dependent clutter and coloured noise[J]. IET Signal Processing, 2019, 13(4): 415–423. doi: 10.1049/iet-spr.2018.5212.
    [21] WANG Liu, WANG Wenqin, GUAN Haoliang, et al. LPI property of FDA transmitted signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3905–3915. doi: 10.1109/TAES.2021.3083402.
    [22] XIONG Jie, WANG Wenqin, CUI Can, et al. Cognitive FDA-MIMO radar for LPI transmit beamforming[J]. IET Radar, Sonar & Navigation, 2017, 11(10): 1574–1580. doi: 10.1049/iet-rsn.2016.0551.
    [23] GONG Pengcheng, JIANG Panke, and WU Yuntao. Transmit beamforming design for LPI of frequency diverse array MIMO radar[C]. 2021 CIE International Conference on Radar, Haikou, China, 2021: 1910–1913. doi: 10.1109/Radar53847.2021.10028350.
    [24] GONG Pengcheng, ZHANG Zhuoyu, WU Yuntao, et al. Joint design of transmit waveform and receive beamforming for LPI FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2022, 29: 1938–1942. doi: 10.1109/LSP.2022.3205206.
    [25] ZHANG Weijian, HU Jinfeng, WEI Zhiyong, et al. Constant modulus waveform design for MIMO radar transmit beampattern with residual network[J]. Signal Processing, 2020, 177: 107735. doi: 10.1016/j.sigpro.2020.107735.
    [26] SALLAM T, ABDEL-RAHMAN A B, ALGHONIEMY M, et al. A neural-network-based beamformer for phased array weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5095–5104. doi: 10.1109/TGRS.2016.2554116.
    [27] ZHAO Zhonghui, ZHAO Huiling, WANG Zhaoping, et al. Radial basis function neural network optimal modeling for phase-only array pattern nulling[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7971–7975. doi: 10.1109/TAP.2021.3083787.
    [28] 丁梓航, 谢军伟, 王博. 基于深度学习的FDA-MIMO雷达协方差矩阵缺失数据恢复方法[J]. 雷达学报, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002.

    DING Zihang, XIE Junwei, and WANG Bo. Missing covariance matrix recovery with the FDA-MIMO radar using deep learning method[J]. Journal of Radars, 2023, 12(5): 1112–1124. doi: 10.12000/JR23002.
    [29] SALLAM T and ATTIYA A M. Convolutional neural network for 2D adaptive beamforming of phased array antennas with robustness to array imperfections[J]. International Journal of Microwave and Wireless Technologies, 2021, 13(10): 1096–1102. doi: 10.1017/S1759078721001070.
    [30] WU Yue, CHEN Yinpeng, YUAN Lu, et al. Rethinking classification and localization for object detection[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 10183–10192. doi: 10.1109/CVPR42600.2020.01020.
    [31] JIA Wenkai, JAKOBSSON A, and WANG Wenqin. Designing FDA radars robust to contaminated shared spectra[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 2861–2873. doi: 10.1109/TAES.2022.3221030.
    [32] CHENG Ziyang, HE Zishu, ZHANG Shengmiao, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912–4923. doi: 10.1109/TSP.2017.2718976.
    [33] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数: 334
  • HTML全文浏览量: 136
  • PDF下载量: 107
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-09-07
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2024-12-28

目录

/

返回文章
返回