一种面向低成本轻量级雷达的单比特复用阵列信号收发框架

冯力方 黄磊 周汉飞 李强 刘仕奇 张沛昌

冯力方, 黄磊, 周汉飞, 等. 一种面向低成本轻量级雷达的单比特复用阵列信号收发框架[J]. 雷达学报(中英文), 2024, 13(1): 134–149. doi: 10.12000/JR23223
引用本文: 冯力方, 黄磊, 周汉飞, 等. 一种面向低成本轻量级雷达的单比特复用阵列信号收发框架[J]. 雷达学报(中英文), 2024, 13(1): 134–149. doi: 10.12000/JR23223
FENG Lifang, HUANG Lei, ZHOU Hanfei, et al. A single-bit multiplexing array signal transceiver framework for low-cost lightweight radar[J]. Journal of Radars, 2024, 13(1): 134–149. doi: 10.12000/JR23223
Citation: FENG Lifang, HUANG Lei, ZHOU Hanfei, et al. A single-bit multiplexing array signal transceiver framework for low-cost lightweight radar[J]. Journal of Radars, 2024, 13(1): 134–149. doi: 10.12000/JR23223

一种面向低成本轻量级雷达的单比特复用阵列信号收发框架

doi: 10.12000/JR23223
基金项目: 国家自然科学基金(62101347, 62371306),国家杰出青年科学基金(61925108),国家自然科学基金国际合作与交流重点项目(62220106009),广东省基础与应用基础研究基金(2021A1515011855, 2022A1515110125),深圳市孔雀团队项目(KQTD20210811090051046),深圳大学2035卓越研究计划,湖州市太赫兹集成电路与系统重点实验室基金(HKLTICY23KF04),深圳市基础研究项目(20220810142731001, 20200823154213001)
详细信息
    作者简介:

    冯力方,博士,助理教授,主要研究方向为雷达信号处理、雷达系统

    黄 磊,博士,教授,主要研究方向为阵列信号处理、雷达信号处理

    周汉飞,博士,副研究员,主要研究方向为雷达信号处理

    李 强,博士,副教授,主要研究方向为阵列信号处理

    刘仕奇,博士,副研究员,主要研究方向为雷达信号处理

    张沛昌,博士,副教授,主要研究方向为MIMO多天线系统、毫米波信号处理

    通讯作者:

    冯力方 fenglifangf@163.com

  • 责任主编:易伟 Corresponding Editor: YI Wei
  • 中图分类号: TN974

A Single-bit Multiplexing Array Signal Transceiver Framework for Low-cost Lightweight Radar

Funds: The National Natural Science Foundation of China (62101347, 62371306), The National Science Fund for Distinguished Young Scholars (61925108), The Key Project of International Cooperation and Exchanges of the National Natural Science Foundation of China (62220106009), The Guangdong Basic and Applied Basic Research Foundation (2021A1515011855, 2022A1515110125), The project of Shenzhen Peacock Plan Teams (KQTD20210811090051046), The Shenzhen University 2035 Program for Excellent Research, The Huzhou Key Laboratory of Terahertz Integrated Circuits and Systems (HKLTICY23KF04), The Foundation of Shenzhen (20220810142731001, 20200823154213001)
More Information
  • 摘要: 面向低成本轻量级雷达的应用需求,该文提出了一种联合单比特采样量化和时分复用接收机的雷达信号收发框架。首先,通过介绍该框架的工作原理,阐述其在节省接收机数量方面的优势。从雷达资源配置的角度,分析了单比特采样量化在该框架中的重要性,并提出了该框架可利用时间换空间,获得比经典线性调频连续波雷达更好的探测性能。接着,推导了雷达测距、测速和测角公式,以及目标参数估计的克拉美罗界。在此基础上,验证了该框架的性能优势,同时也给出了其稳定工作的信噪比条件。最后,利用一种基于单比特二维多重信号分类的速度维配对算法,验证了该框架获取目标原理的正确性,以及性能分析的可靠性。

     

  • 图  1  SMA框架示意图

    Figure  1.  The schematic diagram of SMA framework

    图  2  SMA在TDM-MIMO中应用的示意图

    Figure  2.  Schematic diagram of SMA application in TDM-MIMO

    图  3  SMA-MIMO天线工作原理

    Figure  3.  Working principle of SMA-MIMO antenna

    图  4  雷达资源配置对比示意图

    Figure  4.  Schematic diagram of radar resource allocation comparison

    图  5  发射信号的时频曲线和接收阵元分时接入的时序

    Figure  5.  Time-frequency curve of the transmitting signal and sequential of the time-division access of receiving elements

    图  6  距离估计性能

    Figure  6.  Distance estimation performance

    图  7  速度估计性能

    Figure  7.  Velocity estimation performance

    图  8  DOA估计性能

    Figure  8.  DOA estimation performance

    图  9  固定第1个目标SNR下的距离估计性能

    Figure  9.  Distance estimation performance under fixed first target SNR

    图  10  固定第1个目标SNR下的速度估计性能

    Figure  10.  Velocity estimation performance under fixed first target SNR

    图  11  固定第1个目标SNR下的DOA估计性能

    Figure  11.  DOA estimation performance under fixed first target SNR

    图  12  归一化2D-MUSIC伪谱俯视图

    Figure  12.  Normalized 2D-MUSIC pseudospectral top view

    图  13  提出算法的估计性能

    Figure  13.  The estimation performance of the proposed algorithm

    表  1  不同收发框架需要收发机的数量

    Table  1.   Number of transceivers required for different frameworks

    收发框架类型发射机数量(个)接收机数量(个)
    SIMO112
    TDM-MIMO16
    SMA-MIMO12
    下载: 导出CSV

    表  2  不同雷达类型的参数

    Table  2.   Parameters of different radar types

    案例名接收机数量阵元数量MCPI (ms)脉冲重复周期(μs)脉冲个数P脉冲宽度(μs)ADC采样频率(MHz)单周期采样点数L
    TMLR111.297.40261297.40260.684466
    SMAR-2121.297.40261248.70131.368966
    SMAR-4141.297.40261224.35062.737866
    SMAR-8181.297.40261212.17535.475666
    SMAR-161161.297.4026126.087710.951166
    SLAR-2221.297.40261248.70131.368966
    SLAR-4441.297.40261224.35062.737866
    SLAR-8881.297.40261212.17535.475666
    SLAR-1616161.297.4026126.087710.951166
    下载: 导出CSV
  • [1] LIANG Junli, ZHANG Xuan, SO H C, et al. Sparse array beampattern synthesis via alternating direction method of multipliers[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(5): 2333–2345. doi: 10.1109/TAP.2018.2811778
    [2] WANG Xiangrong, ABOUTANIOS E, and AMIN M G. Thinned array beampattern synthesis by iterative soft-thresholding-based optimization algorithms[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6102–6113. doi: 10.1109/TAP.2014.2364048
    [3] CHEN Kesong, YUN Xiaohua, HE Zishu, et al. Synthesis of sparse planar arrays using modified real genetic algorithm[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(4): 1067–1073. doi: 10.1109/TAP.2007.893375
    [4] FENG Lifang, CUI Guolong, YU Xianxiang, et al. Beampattern synthesis via the constrained subarray layout optimization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 182–194. doi: 10.1109/TAP.2020.3008652
    [5] ZHANG Ruoyu, SHIM B, and WU Wen. Direction-of-arrival estimation for large antenna arrays with hybrid analog and digital architectures[J]. IEEE Transactions on Signal Processing, 2022, 70: 72–88. doi: 10.1109/TSP.2021.3119768
    [6] QIN Si, ZHANG Y D, and AMIN M G, et al. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838
    [7] PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
    [8] BARAL A B and TORLAK M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 980–995. doi: 10.1109/JSTSP.2021.3073572
    [9] HU Xueyao, LI Yang, LU Man, et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3672–3685. doi: 10.1109/TVT.2019.2900357
    [10] HONG Lang and HONG S. Systems and methods for virtual aperature radar tracking[P]. US, EP3746809A4, 2021.
    [11] LEE M S and KIM Y H. Design and performance of a 24-GHz switch-antenna array FMCW radar system for automotive applications[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2290–2297. doi: 10.1109/TVT.2010.2045665
    [12] FANG Jun, LIU Yumeng, LI Hongbin, et al. One-bit quantizer design for multisensor GLRT fusion[J]. IEEE Signal Processing Letters, 2013, 20(3): 257–260. doi: 10.1109/LSP.2013.2243144
    [13] 黄广佳, 程旭, 饶彬, 等. 基于广义Rao检验的单/多比特MIMO雷达运动目标检测方法[J/OL]. 系统工程与电子技术, 1–12. http://kns.cnki.net/kcms/detail/11.2422.TN.20230201.1510.001.html, 2023.

    HUANG Guangjia, CHENG Xu, RAO Bin, et al. One/multi-bit MIMO radar detection of a moving target based on generalized Rao test[J/OL]. Systems Engineering and Electronics, 1–12. http://kns.cnki.net/kcms/detail/11.2422.TN.20230201.1510.001.html, 2023.
    [14] CHENG Xu, CIUONZO D, ROSSI P S, et al. Multi-bit & sequential decentralized detection of a noncooperative moving target through a generalized Rao test[J]. IEEE Transactions on Signal and Information Processing over Networks, 2021, 7: 740–753. doi: 10.1109/TSIPN.2021.3126930
    [15] CHENG Xu, CIUONZO D, and ROSSI P S. Multibit decentralized detection through fusing smart and dumb sensors based on Rao test[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 1391–1405. doi: 10.1109/TAES.2019.2936777
    [16] WANG Xueqian, LI Gang, and VARSHNEY P K. Distributed detection of weak signals from one-bit measurements under observation model uncertainties[J]. IEEE Signal Processing Letters, 2019, 26(3): 415–419. doi: 10.1109/LSP.2019.2892196
    [17] LI Chengxi, HE You, WANG Xueqian, et al. Distributed detection of sparse stochastic signals via fusion of 1-bit local likelihood ratios[J]. IEEE Signal Processing Letters, 2019, 26(12): 1738–1742. doi: 10.1109/LSP.2019.2945193
    [18] LI Chengxi, LI Gang, and VARSHNEY P K. Distributed detection of sparse stochastic signals with 1-bit data in tree-structured sensor networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 2963–2976. doi: 10.1109/TSP.2020.2988598
    [19] XIAO Yuhang, RAMÍREZ D, SCHREIER P J, et al. One-bit target detection in collocated MIMO radar and performance degradation analysis[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9): 9363–9374. doi: 10.1109/TVT.2022.3178285
    [20] REN Jiaying, ZHANG Tianyi, LI Jian, et al. Sinusoidal parameter estimation from signed measurements via majorization-minimization based RELAX[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2173–2186. doi: 10.1109/TSP.2019.2899804
    [21] STOICA P, SHANG Xiaolei, and CHENG Yuanbo. The Cramér-Rao bound for signal parameter estimation from quantized data [Lecture Notes][J]. IEEE Signal Processing Magazine, 2022, 39(1): 118–125. doi: 10.1109/MSP.2021.3116532
    [22] FENG Lifang, HUANG Lei, LI Qiang, et al. An off-grid iterative reweighted approach to one-bit direction of arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 8134–8139. doi: 10.1109/TVT.2023.3239003
    [23] BAR-SHALOM O and WEISS A J. DOA estimation using one-bit quantized measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 868–884. doi: 10.1109/TAES.2002.1039405
    [24] HUANG Xiaodong and LIAO Bin. One-bit MUSIC[J]. IEEE Signal Processing Letters, 2019, 26(7): 961–965. doi: 10.1109/LSP.2019.2913452
    [25] CHEN Xinzhu, HUANG Lei, ZHOU Hanfei, et al. One-bit digital beamforming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(1): 555–567. doi: 10.1109/TAES.2022.3181257
    [26] FU Haoyu and CHI Yuejie. Quantized spectral compressed sensing: Cramer-Rao bounds and recovery algorithms[J]. IEEE Transactions on Signal Processing, 2018, 66(12): 3268–3279. doi: 10.1109/TSP.2018.2827326
    [27] ZAYYANI H, HADDADI F, and KORKI M. Double detector for sparse signal detection from one-bit compressed sensing measurements[J]. IEEE Signal Processing Letters, 2016, 23(11): 1637–1641. doi: 10.1109/LSP.2016.2613898
    [28] SHANG Xiaolei, LI Jian, and STOICA P. Weighted SPICE algorithms for range-Doppler imaging using one-bit automotive radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 1041–1054. doi: 10.1109/JSTSP.2021.3071601
    [29] ZAHABI S J, NAGHSH M M, MODARRES-HASHEMI M, et al. One-bit compressive radar sensing in the presence of clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 167–185. doi: 10.1109/TAES.2019.2916532
    [30] ZHANG Rong, LI Changheng, LI Jian, et al. Range estimation and range-Doppler imaging using signed measurements in LFMCW radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3531–3550. doi: 10.1109/TAES.2019.2907395
    [31] JIN Benzhou, ZHU Jiang, WU Qihui, et al. One-bit LFMCW radar: Spectrum analysis and target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2732–2750. doi: 10.1109/TAES.2020.2978374
    [32] AMERI A, BOSE A, LI Jian, et al. One-bit radar processing with time-varying sampling thresholds[J]. IEEE Transactions on Signal Processing, 2019, 67(20): 5297–5308. doi: 10.1109/TSP.2019.2939086
    [33] XI Feng, XIANG Yijian, ZHANG Zhen, et al. Joint angle and Doppler frequency estimation for MIMO radar with one-bit sampling: A maximum likelihood-based method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4734–4748. doi: 10.1109/TAES.2020.3000841
    [34] CHENG Ziyang, HE Zishu, and LIAO Bin. Target detection performance of collocated MIMO radar with one-bit ADCs[J]. IEEE Signal Processing Letters, 2019, 26(12): 1832–1836. doi: 10.1109/LSP.2019.2951496
    [35] XI Feng, XIANG Yijian, CHEN Shengyao, et al. Gridless parameter estimation for one-bit MIMO radar with time-varying thresholds[J]. IEEE Transactions on Signal Processing, 2020, 68: 1048–1063. doi: 10.1109/TSP.2020.2970343
    [36] LIU Bingfan, CHEN Baixiao, and YANG Minglei. Parameter estimation and CRB analysis of 1-bit colocated MIMO radar[J]. IET Radar, Sonar & Navigation, 2021, 15(6): 592–604. doi: 10.1049/rsn2.12076
    [37] 张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10(6): 970–981. doi: 10.12000/JR21062

    ZHANG Guoxin, YI Wei, and KONG Lingjiang. Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10(6): 970–981. doi: 10.12000/JR21062
    [38] 王峥. 单比特压缩感知雷达成像关键技术的研究[D]. [博士论文], 中国科学技术大学, 2021.

    WANG Zheng. One-bit compressed sensing radar imaging research on key technologies[D]. [Ph.D. dissertation], University of Science and Technology of China, 2021.
    [39] 赵博, 黄磊, 周汉飞, 等. 基于单频时变阈值的1-bit SAR成像方法研究[J]. 雷达学报, 2018, 7(4): 446–454. doi: 10.12000/JR18036

    ZHAO Bo, HUANG Lei, ZHOU Hanfei, et al. 1-bit SAR imaging method based on single-frequency time-varying threshold[J]. Journal of Radars, 2018, 7(4): 446–454. doi: 10.12000/JR18036
    [40] ZHAO Bo, HUANG Lei, and BAO Weimin. One-bit SAR imaging based on single-frequency thresholds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 7017–7032. doi: 10.1109/TGRS.2019.2910284
    [41] ZHAO Bo, HUANG Lei, LI Jian, et al. Deceptive SAR jamming based on 1-bit sampling and time-varying thresholds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 939–950. doi: 10.1109/JSTARS.2018.2793247
    [42] VAN VLECK J H and MIDDLETON D. The spectrum of clipped noise[J]. Proceedings of the IEEE, 1966, 54(1): 2–19. doi: 10.1109/PROC.1966.4567
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  61
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-17
  • 修回日期:  2023-12-29
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2024-02-28

目录

    /

    返回文章
    返回