Loading [MathJax]/jax/output/SVG/jax.js

集中式MIMO雷达研究综述

何子述 程子扬 李军 张伟 史靖希 苏洋 邓明龙

周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080
引用本文: 何子述, 程子扬, 李军, 等. 集中式MIMO雷达研究综述[J]. 雷达学报, 2022, 11(5): 805–829. doi: 10.12000/JR22128
ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080
Citation: HE Zishu, CHENG Ziyang, LI Jun, et al. A survey of collocated MIMO radar[J]. Journal of Radars, 2022, 11(5): 805–829. doi: 10.12000/JR22128

集中式MIMO雷达研究综述

DOI: 10.12000/JR22128
基金项目: 国家自然科学基金(62001084, 62031007)
详细信息
    作者简介:

    何子述,博士,教授,研究方向为新体制雷达系统、雷达信号处理等

    程子扬,博士,副研究员,研究方向为MIMO雷达信号处理、分布式雷达目标探测、雷达通信一体化设计等

    李 军,博士,副教授,研究方向为雷达信号处理、认知雷达、极化雷达等

    张 伟,博士,副研究员,研究方向为毫米波雷达、雷达干扰/杂波抑制等

    史靖希,博士,研究方向为雷达空时自适应处理、毫米波雷达等

    苏 洋,博士生,研究方向为雷达资源管理、分布式雷达系统等

    邓明龙,博士生,研究方向为雷达波形设计、分布式雷达系统等

    通讯作者:

    程子扬 zycheng@uestc.edu.cn

  • 责任主编:廖桂生 Corresponding Editor: LIAO Guisheng
  • 中图分类号: TN951

A Survey of Collocated MIMO Radar

Funds: The National Natural Science Foundation of China (62001084, 62031007)
More Information
  • 摘要: 多输入多输出(MIMO)雷达作为一种新体制雷达,利用其发射波形分集的特点,在目标检测、参数估计、射频隐身及抗干扰等诸多方面展现出了突出的性能,经过学者们近20年的深入研究,基于正交波形的MIMO雷达相关理论日臻完善,并在汽车辅助驾驶、安全防卫等领域得到广泛应用。近年来,随着电磁环境感知及知识辅助等概念的引入,基于波形优化的MIMO雷达主动抗干扰、射频隐身、以及探测-通信一体化等技术受到学者们的关注并得到深入研究。该文力图对学者们近20年来围绕MIMO雷达的研究工作进行归纳与综述,内容主要包括:正交波形MIMO雷达原理、目标探测性能分析、典型应用;正交波形MIMO雷达波形设计与特点;基于知识的认知MIMO波形设计与算法;基于MIMO的探测-通信一体化波形设计与算法;MIMO雷达信号处理、数据处理及资源管理。论文最后对MIMO雷达在机载应用中的空时处理(STAP)、MIMO雷达在成像中的信号处理、以及基于时分多波形分集的线性调频毫米波MIMO雷达信号处理等进行了讨论。

     

  • 极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)具有全天时和几乎全天候的工作能力,通过收发极化状态正交的电磁波以获取目标的全极化散射信息[1]。地物分类是农作物生长监控、农村与城市用地普查、环境监测等应用领域的共性基础问题,也是极化SAR图像理解与解译的重要应用方向。高精度的地物分类结果能够为上述应用领域提供可靠的信息支撑。

    通常,提高极化SAR地物分类精度主要有两种途径[2]。第1种途径专注于极化特征的挖掘与优选,通过精细化的极化散射机理建模与解译,从全极化信息中提取出对不同地物类别具有更强区分度的特征。常用的极化散射机理解译方法有基于特征值分解的方法和基于模型分解的方法。基于这些极化目标分解方法所得到的极化特征参数经常被用于极化SAR地物分类,例如Cloude-Pottier分解所得的极化熵/极化平均角/极化反熵(H/ α/A)参数[3],Freeman-Durden分解[4]、Yamaguchi分解[5]和近年来提出的精细化极化目标分解[6]所得的各散射机理的散射能量参数(如奇次散射、偶次散射、体散射、螺旋散射等)[7]。第2种途径则从分类器入手,使用性能更好的分类器,以对现有的极化特征进行充分利用。常用的分类器包括C均值分类器、Wishart分类器、支持向量机(Support Vector Machine, SVM)分类器、随机森林分类器、神经网络分类器以及近来年在诸多领域取得成功应用的以卷积神经网络为代表的深度学习分类方法等[811]。当然,对特征和分类器同时进行优化和优选也是提高极化SAR地物分类精度的有效途径。

    在传统基于特征的极化SAR地物分类中,具有旋转不变特性的极化特征参数得到了广泛应用。例如,基于H/ α/A和总散射能量SPAN的极化SAR地物分类就是一种常用的分类方法。然而,目标的极化响应与目标和SAR的相对几何关系密切相关。同一目标在不同方位取向下,其后向散射可以是显著不同的。同时,不同目标在某些特定方位取向下,其后向散射又是十分相似的。例如,具有不同方位取向的建筑物与森林等植被就是极化SAR图像解译的难点。这是诸多传统极化目标分解方法存在散射机理解译模糊的重要原因之一,同时也限制了基于旋转不变极化特征参数的传统分类方法所得精度的进一步提升。为避免这种解译模糊,一种思路是构建更精细化的目标散射模型和精细化的极化目标分解方法。而另一种思路则是挖掘利用目标方位取向与其后向散射机理之间的隐含关系。文献[12]提出的统一的极化矩阵旋转理论就是一种代表性的方法。该方法提出了在绕雷达视线的旋转域中理解目标散射特性的新思路,并导出了一系列旋转域极化特征。部分旋转域极化特征参数已经在农作物辨识[13]、目标对比增强[12]、人造目标提取[14]等领域获得了成功应用。

    由于这些旋转域极化特征包含有目标在旋转域中隐含的极化散射信息,且与其方位取向具有一定关系。若将它们与传统的旋转不变极化特征参数于H/ α/A/SPAN联合作为地物分类特征集,则从极化特征挖掘的角度来看,两类不同的极化特征对于不同地物类别的区分能力势必会形成一定程度的互补,进而使分类精度得到进一步提升。基于这一思路,本文提出了一种结合旋转域极化特征与旋转不变特征H/ α/A/SPAN的极化SAR地物分类方法。具体即基于不同地物类别样本集类间距最大的特征优选准则,以部分优选的旋转域极化特征参数与H/ α/A/SPAN联合作为地物分类所用特征,并选用性能较为稳定的SVM[15]作为分类器进行分类处理。由于该分类方法额外使用了目标在方位取向方面的隐含信息,故相较于仅使用旋转不变特征H/ α/A/SPAN作为输入的SVM分类器[10],其能够达到更优的分类性能表现。

    本文第2节简要介绍了统一的极化矩阵旋转理论及其所导出的旋转域极化特征参数;第3节提出结合旋转域极化特征的极化SAR地物分类方法;第4节基于AIRSAR和多时相UAVSAR实测数据开展了地物分类对比实验及分析;第5节总结本文方法并对后续研究工作进行展望。

    极化SAR获得的目标全极化信息可以通过极化相干矩阵T表示。满足互易性原理时,极化相干矩阵T可以表示为:

    T=kPkHP=[T11T12T13T21T22T23T31T32T33] (1)

    其中, kP=12[SHH+SVVSHHSVV2SHV]T为Pauli散射矢量。 SHV为以垂直极化天线发射并以水平极化天线接收条件下的散射系数, kP中其它元素可类似定义。  表示集合平均。 Tij则表示极化相干矩阵 T中第i行第j列所对应的元素。

    将极化相干矩阵 T绕雷达视线进行旋转处理,则可得到旋转域中极化相干矩阵的表达式为:

    T(θ)=kP(θ)kHP(θ)=R3(θ)TRH3(θ) (2)

    其中,旋转矩阵为:

    R3(θ)=[1000cos2θsin2θ0sin2θcos2θ] (3)

    在旋转域中极化相干矩阵 T(θ)的每个元素经过相应的数学变换即可被统一地由一个正弦函数进行表征[12]

    f(θ)=Asin[ω(θ+θ0)]+B (4)

    其中,A为振荡幅度,B为振荡中心, ω为角频率, θ0为初始角度。文献[12]将这4类极化特征参数 {A,B,ω,θ0}称为振荡参数集,其完整表征极化相干矩阵的各元素在旋转域中的特性。这样就可以导出一系列旋转域极化特征参数,如表1所示。其中, Angle{a}表示复数a的相位,相应取值范围为 [π,π]

    表  1  旋转域极化特征参数[12]
    Table  1.  Polarimetric feature parameters derived from rotation domain[12]
    散射矩阵元素项 A= B ω θ0=1ωAngle{}
    Re[T12(θ)] Re2[T12]+Re2[T13] 0 2 Re[T13]+jRe[T12]
    Re[T13(θ)] Re2[T12]+Re2[T13] 0 2 Re[T12]+jRe[T13]
    Im[T12(θ)] Im2[T12]+Im2[T13] 0 2 Im[T13]+jIm[T12]
    Im[T13(θ)] Im2[T12]+Im2[T13] 0 2 Im[T12]+jIm[T13]
    Re[T23(θ)] 14(T33T22)2+Re2[T23] 0 4 12(T33T22)+jRe[T23]
    T22(θ) 14(T33T22)2+Re2[T23] 12(T22+T33) 4 Re[T23]+j12(T22T33)
    T33(θ) 14(T33T22)2+Re2[T23] 12(T22+T33) 4 Re[T23]+j12(T33T22)
    |T12(θ)|2 Re2[T12T13]+14(|T13|2|T12|2)2 12(|T12|2+|T13|2) 4 Re[T12T13]+j12(|T12|2|T13|2)
    |T13(θ)|2 Re2[T12T13]+14(|T13|2|T12|2)2 12(|T12|2+|T13|2) 4 Re[T12T13]+j12(|T13|2|T12|2)
    |T23(θ)|2 14{14(T33T22)2+Re2[T23]}2 12{14(T33T22)2+Re2[T23]}+Im2[T23] 8 12(T33T22)Re[T23]+j12[Re2[T23]14(T33T22)2]
    下载: 导出CSV 
    | 显示表格

    基于上述振荡参数集,文献[12]还导出了一系列的极化角参数集,如极化零角参数、极化最大化角参数以及极化最小化角参数等。其中,极化零角参数的定义为在绕雷达视线的旋转域中使极化相干矩阵某元素取值为零的旋转角,即:

    f(θ)=Asin[ω(θnull+θ0)]+B=0θnull=θ0 (5)

    其中, θnull即极化零角参数。由于表1中相互独立的5个初始角度 θ0分别为 θ0_Re[T12(θ)], θ0_Im[T12(θ)], θ0_Re[T23(θ)], θ0_|T12(θ)|2θ0_|T23(θ)|2,故相应的极化零角参数有 θnull_Re[T12(θ)], θnull_Im[T12(θ)], θnull_Re[T23(θ)], θnull_|T12(θ)|2θnull_|T23(θ)|2。由文献[12]可知,各初始角度与其相应极化零角参数所包含的极化信息是相互等价的,且极化零角参数具有相对明确的物理意义,故在本文的后续部分均以极化零角参数代替相应的初始角度。

    文献[12]使用极化零角参数 θnull_Re[T12(θ)]θnull_Im[T12(θ)]的组合能够成功辨识7类不同农作物,初步证实了极化零角参数集对于不同地物类别具有较好的区分能力。在此基础上,本文挖掘利用旋转域极化特征所蕴含目标在旋转域中的隐含信息,并将其应用于极化SAR地物分类。

    在此之前,需要基于地物分类的应用背景对众多的旋转域极化特征进行优选处理。在文献[12]所导出的一系列旋转域极化特征之中,以不同地物类别样本集相互之间的“类间距最大化”为准则,进行相应的旋转域极化特征优选。具体步骤为:首先对各旋转域极化特征参数进行归一化处理;然后将不同的地物类别两两组合形成若干的地物类别对;接着针对各地物类别对,以其中两地物类别之间的类间距为标准,优选出使其取值达到最大的旋转域极化特征,则每个地物类别对均对应于一个优选的旋转域极化特征;最后,将各地物类别对的优选结果进行“取并集”处理,进而得到最终的优选结果。

    文献[12]所导出相互独立的旋转域极化特征共有12个,分别为 θnull_Re[T12(θ)], θnull_Im[T12(θ)], θnull_Re[T23(θ)], θnull_|T12(θ)|2, θnull_|T23(θ)|2, A_Re[T12(θ)], A_Im[T12(θ)], A_T12(θ), A_ T23(θ), B_T12(θ), B_T33(θ), B_T23(θ)。针对之后实验部分所使用的AIRSAR数据(15类地物,两两组合形成105个地物类别对;其它说明见4.1节)以及多时相UAVSAR数据(7类地物,两两组合形成21个地物类别对;4个数据获取日期;其它说明见4.2节),上述特征优选流程所得结果如表2所示。

    表  2  针对不同极化SAR实测数据的特征优选结果
    Table  2.  Selected features for different PolSAR data
    实测数据 优选所得旋转域极化特征(相应地物类别对的个数)
    AIRSAR θnull_Re[T12(θ)](18), θnull_Im[T12(θ)](15), θnull_Re[T23(θ)](71), B_T33(θ)(1)
    UAVSAR 6月17日 θnull_Re[T12(θ)](5), θnull_Im[T12(θ)](12), θnull_Re[T23(θ)](4)
    6月22日 θnull_Re[T12(θ)](5), θnull_Im[T12(θ)](14), θnull_Re[T23(θ)](2)
    7月03日 θnull_Im[T12(θ)](3), θnull_Re[T23(θ)](18)
    7月17日 θnull_Re[T12(θ)](7), θnull_Im[T12(θ)](5), θnull_Re[T23(θ)](9)
    下载: 导出CSV 
    | 显示表格

    综合考虑表2中的优选结果,并在追求较高地物分类精度的同时,将两组实测数据优选得到的旋转域极化特征进行统一,故本文优选部分的最终结果为3个极化零角参数,即 θnull_Re[T12(θ)], θnull_Im[T12(θ)]θnull_Re[T23(θ)]

    为了将目标在旋转域中的隐含信息充分利用在极化SAR地物分类中,同时又发挥传统的旋转不变极化特征参数H/A/ α/SPAN在极化散射机理解译方面的优点,本文提出了一种结合旋转域极化特征的极化SAR地物分类方法,其流程图如图1所示,相应的具体操作如下:

    图  1  本文方法具体流程图
    Figure  1.  Flowchart of proposed method

    (1) 在进行Cloude-Pottier分解之前,需要对极化SAR数据进行相干斑滤波处理。本文采用新近提出的一种基于矩阵相似性检验的SimiTest自适应相干斑滤波方法[16]对极化SAR数据进行滤波预处理。

    (2) 基于滤波后的极化相干矩阵,计算总散射能量SPAN。

    (3) 同样地,基于滤波后的极化相干矩阵,进行Cloude-Pottier分解,得到极化特征量H/ α/A

    (4) 同时,将滤波后的极化相干矩阵绕雷达视线旋转,计算上述优选部分所得的3个极化零角参数。

    (5) 对上述7个极化特征参数分别进行归一化处理,以作为地物分类特征集输入至SVM分类器。

    (6) 通过SVM相应的训练与测试过程,实现对不同地物类别的分类处理。

    为了验证新极化特征(即3个旋转域极化零角参数)的引入对于传统地物分类方法性能的提升作用,在对极化相干矩阵中全部极化信息进行利用的前提之下,将本文方法与仅使用旋转不变特征H/A/ α/SPAN作为SVM分类器输入的传统方法进行对比。首先使用AIRSAR数据15类地物的分类验证本文方法的分类性能,再使用多时相UAVSAR数据7类地物的分类进一步验证本文方法对多时相数据的稳健性。在对此两组数据分别进行SimiTest相干斑滤波[16]时,所用滑窗大小均为15×15。对SVM分类器,各类地物样本的一半用于训练,另一半用于测试。

    本文首先使用NASA/JPL AIRSAR系统在荷兰Flevoland地区所获取的L波段全极化SAR数据进行地物分类实验。该数据方位向分辨率为12.1 m,距离向分辨率为6.6 m,所用区域大小为736×1010。SimiTest相干斑滤波后的Pauli RGB图如图2(a)所示。该区域的真值图如图2(b)所示,其中主要包含茎豆、豌豆、森林、苜蓿、小麦1、甜菜、土豆、裸地、草地、油菜籽、大麦、小麦2、小麦3、水域以及建筑物等15类地物。

    图  2  AIRSAR数据
    Figure  2.  AIRSAR data

    使用传统方法和本文方法分别对滤波后的数据进行分类处理,所得结果如图3所示。

    图  3  AIRSAR数据的分类结果
    Figure  3.  Classification results of AIRSAR data

    两种方法对AIRSAR数据15类地物分类处理所得精度如表3所示。通过比较可知,本文方法得到的总体分类精度为92.3%,优于传统方法91.1%的分类精度。且本文方法对草地77.3%的分类精度相较于传统方法的59.3%提升了18个百分点。另外,由于SVM分类器所用分类策略以总体分类精度的最大化为目标,无法保证单一地物类别的分类精度均达到最优。例如,本文方法在苜蓿、小麦1、裸地、大麦以及建筑物等5种地物类别区域所得分类精度均不及传统方法。针对其中分类精度差距最大(约8.3%)的裸地,由于其相应区域的主要散射机制为“面散射”,不同方位取向对其后向散射的影响较小,使用传统的旋转不变极化特征已经能较好地对其进行区分与辨识,本文方法额外引入的3个旋转域极化零角参数可能造成了分类信息的冗余,进而导致所得分类精度的较大幅度下降。

    表  3  两种方法所得AIRSAR数据15类地物及总体的分类精度(%)
    Table  3.  Classification accuracy of different terrains in AIRSAR data using two methods (%)
    地物 传统方法 本文方法
    茎豆 97.2 98.0
    豌豆 93.7 96.9
    森林 92.6 93.7
    苜蓿 96.8 96.6
    小麦1 88.7 85.9
    甜菜 93.8 93.8
    土豆 92.6 93.3
    裸地 95.5 87.2
    草地 59.3 77.3
    油菜籽 83.9 88.0
    大麦 92.6 91.5
    小麦2 89.2 89.4
    小麦3 94.3 95.9
    水域 98.0 98.5
    建筑物 84.9 83.2
    总体精度 91.1 92.3
    下载: 导出CSV 
    | 显示表格

    本文使用NASA/JPL UAVSAR系统在加拿大Manitoba地区所获取的多时相L波段全极化SAR数据进行地物分类实验。该数据方位向分辨率为7 m,距离向分辨率为5 m,所用区域大小为1325×1011。多时相极化SAR数据分别获取于6月17日、6月22日、7月3日以及7月17日。SimiTest相干斑滤波处理之后多时相极化SAR数据对应的Pauli RGB图如图4所示。该区域的主要地物类型是以谷物和油种产品为代表的混合型牧场农作物。相应的真值图如图5所示,其中主要包含阔叶林、草料、大豆、玉米、小麦、油菜籽以及燕麦等7类地物。

    图  4  多时相UAVSAR数据滤波后Pauli RGB图
    Figure  4.  Filtered Pauli RGB images of multi-temporal UAVSAR data
    图  5  所用区域的真值图
    Figure  5.  Gound truth of the multi-temporal data

    使用传统方法和本文方法分别对滤波后的多时相极化SAR数据进行相互独立的分类处理,所得结果分别如图6图7所示。

    图  6  传统方法对多时相UAVSAR数据分类结果
    Figure  6.  Classification results of multi-temporal UAVSAR data using conventional method
    图  7  本文方法对多时相UAVSAR数据分类结果
    Figure  7.  Classification results of multi-temporal UAVSAR data using proposed method

    图6(c)图7(c)所示,基于7月3日获取的数据,传统方法将红色圆框内小麦与燕麦的绝大部分错分为了大豆,而本文方法在该区域的分类性能相较于前者有显著提升。又如图6(d)图7(d)所示,基于7月17日获取的数据,传统方法将白色圆框内小麦的绝大部分错分为了大豆,而本文方法在该区域的分类精度相较于前者也有较大提升。

    两种方法对多时相UAVSAR数据7类地物分类处理所得精度如表4所示。通过比较可知,对不同日期获取的数据,本文方法所得各类地物及总体的分类精度均优于或相当于传统方法。其中,对6月17日、6月22日、7月3日以及7月17日4个不同日期所获取的数据,本文方法得到的总体分类精度分别为94.98%, 95.12%, 95.99%以及96.78%,而传统方法所得总体分类精度则波动于80.87%至90.75%之间,出现约10%的起伏。具体就小麦和燕麦而言,本文方法得到的分类精度均分别保持在94%和92%以上,而传统方法所得相应分类精度则分别出现了约30%和23%的波动起伏。另外,本文方法95.72%的平均总体分类精度相较于传统方法的87.80%提升了约8个百分点。故本文方法较好的分类性能对于同一系统的多时相数据更具稳健性。

    表  4  两种方法所得多时相UAVSAR数据7类地物及总体的分类精度 (%)
    Table  4.  The classification accuracy of different terrains in multi-temporal UAVSAR data using two methods (%)
    日期 方法 阔叶林 草料 大豆 玉米 小麦 油菜籽 燕麦 总体
    6月17日 传统 98.47 62.24 92.64 96.12 93.63 91.70 86.37 90.19
    本文 98.49 81.65 96.76 98.19 96.08 92.25 96.32 94.98
    6月22日 传统 98.05 61.38 94.14 97.30 97.89 93.82 77.29 90.75
    本文 97.96 72.60 96.86 98.18 97.07 96.84 95.13 95.12
    7月3日 传统 97.41 54.38 90.45 98.89 68.75 98.81 63.46 80.87
    本文 97.77 76.68 98.12 99.08 96.95 98.93 94.22 95.99
    7月17日 传统 96.86 64.51 97.38 99.78 84.76 92.19 82.98 89.39
    本文 97.27 93.15 99.31 99.58 94.73 99.71 92.16 96.78
    平均 传统 97.70 60.63 93.65 98.02 86.26 94.13 77.53 87.80
    本文 97.87 81.02 97.76 98.76 96.21 96.93 94.46 95.72
    下载: 导出CSV 
    | 显示表格

    另外,对于6月22日所获取数据中的阔叶林和小麦,以及7月17日所获取数据中的玉米,本文方法所得分类精度均略低于传统方法,且分类精度的差距均在1%以内。

    在上述两组相互独立的对比实验所得结果中,本文方法所得分类精度均优于传统方法。故本文方法所表现出的较好分类性能对于不同系统的数据也具有较强稳健性。

    目标方位取向对其后向散射响应的直接影响极易引起散射机理的解译模糊,进而限制仅使用旋转不变特征参数作为分类特征集的极化SAR地物分类所得精度。针对这一问题,本文将刻画目标旋转域隐含信息的旋转域极化特征用于极化SAR地物分类,并提出了一种结合旋转域极化特征和旋转不变特征H/A/ α/SPAN的极化SAR地物分类方法,该方法将旋转域极化零角参数和H/A/ α/SPAN联合作为分类特征集输入至SVM分类器。

    将本文方法与仅使用旋转不变特征H/A/ α/SPAN作为SVM分类器输入的传统方法进行比较:对AIRSAR数据15类地物分类而言,本文方法总体分类精度达到92.3%,优于传统方法的91.1%。对多时相UAVSAR数据7类地物分类而言,本文方法平均总体分类精度达到95.72%,显著优于传统方法的87.80%,表明本文方法对同一系统的多时相数据更具稳健性。这两组对比实验也表明本文方法较好的分类性能对于不同系统的数据具有较强稳健性。

    通过对旋转域中目标极化散射信息的深入挖掘,能够为极化SAR图像的解译与应用提供一条新的可行途径。下一步将考虑旋转域极化特征与具有深度学习能力的卷积神经网络等分类器相结合,以实现更高的分类精度。另外,对极化特征参数更优的选择准则及相互融合也是我们未来将要深入研究讨论的内容。

  • 图  1  集中式MIMO雷达收发结构

    Figure  1.  Collected MIMO radar transceiver structure

    图  2  正交波形MIMO雷达虚拟阵原理

    Figure  2.  Principle of virtual array of orthogonal waveform MIMO radar

    图  3  LFM步进频频分MIMO 雷达发射功率距离-角度耦合

    Figure  3.  Distance-angle coupling of LFM stepped frequency division MIMO radar transmit power

    图  4  BSUM算法求解框架示意图

    Figure  4.  Schematic diagram of the solution framework of the BSUM algorithm

    图  5  TDM-MIMO雷达原理

    Figure  5.  Principle of TDM-MIMO radar

  • [1] 何子述, 李军, 刘红明, 等. MIMO雷达[M]. 北京: 国防工业出版社, 2017.

    HE Zishu, LI Jun, LIU Hongming, et al. MIMO Radar[M]. Beijing: National Defense Industry Press, 2017.
    [2] RABIDEAU D J and PARKER P. Ubiquitous MIMO multifunction digital array radar[C]. The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, Pacific Grove, USA, 2003: 1057–1064.
    [3] LI Jian and STOICA P. MIMO radar diversity means superiority[C]. 14th Adaptive Sensor Array Processing, Mass, USA, 2006.
    [4] BLISS D W and FORSYTHE K W. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution[C]. The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, USA, 2003: 54–59.
    [5] FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78.
    [6] FISHLER E, HAIMOVICH A, BLUM R, et al. Performance of MIMO radar systems: Advantages of angular diversity[C]. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, Pacific Grove, USA, 2004: 305–309.
    [7] 何子述, 韩春林, 刘波. MIMO雷达概念及其技术特点分析[J]. 电子学报, 2005, 33(12A): 2441–2445.

    HE Zishu, HAN Chunlin, and LIU Bo. MIMO radar and its technical characteristic analyses[J]. Acta Electronica Sinica, 2005, 33(12A): 2441–2445.
    [8] 张伟. 机载MIMO雷达空时信号处理研究[D]. [博士论文], 电子科技大学, 2013.

    ZHANG Wei. Analysis on airborne MIMO radar space time signal processing[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2013.
    [9] CHEN Chunyang and VAIDYANATHAN P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623–635. doi: 10.1109/TSP.2007.907917
    [10] MECCA V F, RAMAKRISHNAN D, and KROLIK J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 249–253.
    [11] XU Jingwei, ZHU Shengqi, and LIAO Guisheng. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3): 1602–1610. doi: 10.1109/JSEN.2014.2364594
    [12] WEN Cai, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [13] WANG Keyi, LIAO Guisheng, XU Jingwei, et al. Clutter rank analysis in airborne FDA-MIMO radar with range ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1416–1430. doi: 10.1109/TAES.2021.3122822
    [14] SHI Junnan, JIU Bo, LIU Hongwei, et al. Transmit design for airborne MIMO radar based on prior information[J]. Signal Processing, 2016, 128: 521–530. doi: 10.1016/j.sigpro.2016.05.003
    [15] ZHOU Qingsong, LI Zhihui, SHI Junpeng, et al. Robust cognitive transmit waveform and receive filter design for airborne MIMO radar in signal-dependent clutter environment[J]. Digital Signal Processing, 2020, 101: 102709. doi: 10.1016/j.dsp.2020.102709
    [16] SHI Shengnan, HE Zishu, and WANG Zhaoyi. Joint design of transmitting waveforms and receiving filter for MIMO-STAP airborne radar[J]. Circuits, Systems, and Signal Processing, 2020, 39(3): 1489–1508. doi: 10.1007/s00034-019-01215-w
    [17] ABRAMOVICH Y I, FRAZER G J, and JOHNSON B A. Principles of mode-selective MIMO OTHR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1839–1868. doi: 10.1109/TAES.2013.6558024
    [18] HE Qian, LI Xiaodong, HE Zishu, et al. MIMO-OTH radar: Signal model for arbitrary placement and signals with non-point targets[J]. IEEE Transactions on Signal Processing, 2015, 63(7): 1846–1857. doi: 10.1109/TSP.2015.2403275
    [19] HU Jianbin, LI Mao, HE Qian, et al. Joint estimation of MIMO-OTH radar measurements and ionospheric parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2789–2805. doi: 10.1109/TAES.2017.2714961
    [20] WANG Yufei, ZHANG Linxi, and SONG Zuxun. Angle estimation of weak scatterers using improved MUSIC for bistatic MIMO radar[J]. IEEE Signal Processing Letters, 2020, 27: 2164–2167. doi: 10.1109/LSP.2020.3039935
    [21] JIANG Hong, ZHANG Jiankang, and WONG K M. Joint DOD and DOA estimation for bistatic MIMO radar in unknown correlated noise[J]. IEEE Transactions on Vehicular Technology, 2015, 64(11): 5113–5125. doi: 10.1109/TVT.2014.2384495
    [22] LI Jianfeng, ZHANG Xiaofei, CAO Renzheng, et al. Reduced-dimension MUSIC for angle and array gain-phase error estimation in bistatic MIMO radar[J]. IEEE Communications Letters, 2013, 17(3): 443–446. doi: 10.1109/LCOMM.2013.012313.122113
    [23] 刘红明. 双基地MIMO雷达原理与理论研究[D]. [博士论文], 电子科技大学, 2010.

    LIU Hongming. Analysis on basic principles and theory of bistatic MIMO radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2010.
    [24] LIU Hongwei, WANG Xu, JIU Bo, et al. Wideband MIMO radar waveform design for multiple target imaging[J]. IEEE Sensors Journal, 2016, 16(23): 8545–8556. doi: 10.1109/JSEN.2016.2604844
    [25] BLEH D, RÖSCH M, KURI M, et al. W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3474–3484. doi: 10.1109/TMTT.2017.2661742
    [26] JEON S Y, KIM S, KIM J, et al. W-band FMCW MIMO radar system for high-resolution multimode imaging with time-and frequency-division multiplexing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 5042–5057. doi: 10.1109/TGRS.2020.2971998
    [27] GANIS A, NAVARRO E M, SCHOENLINNER B, et al. A portable 3-D imaging FMCW MIMO radar demonstrator with a 24 × 24 antenna array for medium-range applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 298–312. doi: 10.1109/TGRS.2017.2746739
    [28] ENGELS F, HEIDENREICH P, ZOUBIR A M, et al. Advances in automotive radar: A framework on computationally efficient high-resolution frequency estimation[J]. IEEE Signal Processing Magazine, 2017, 34(2): 36–46. doi: 10.1109/MSP.2016.2637700
    [29] KRONAUGE M and ROHLING H. New chirp sequence radar waveform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2870–2877. doi: 10.1109/TAES.2014.120813
    [30] ZHANG Wei, LI Huiyong, SUN Guohao, et al. Enhanced detection of Doppler-spread targets for FMCW radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(4): 2066–2078. doi: 10.1109/TAES.2019.2925433
    [31] DENG Hai. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 3126–3135. doi: 10.1109/TSP.2004.836530
    [32] LIU Bo, HE Zishu, ZENG Jiankui, et al. Polyphase orthogonal code design for MIMO radar systems[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4.
    [33] 胡亮兵, 刘宏伟, 吴顺君. 基于约束非线性规划的MIMO雷达正交波形设计[J]. 系统工程与电子技术, 2011, 33(1): 64–68. doi: 10.3969/j.issn.1001-506X.2011.01.13

    HU Liangbing, LIU Hongwei, and WU Shunjun. Orthogonal waveform design for MIMO radar via constrained nonlinear programming[J]. Systems Engineering and Electronics, 2011, 33(1): 64–68. doi: 10.3969/j.issn.1001-506X.2011.01.13
    [34] 吕红芬, 宋万杰, 张子敬, 等. 基于遗传算法和贪心算法正交多相码设计[J]. 雷达科学与技术, 2010, 8(6): 543–548, 558. doi: 10.3969/j.issn.1672-2337.2010.06.011

    LV Hongfen, SONG Wanjie, ZHANG Zijing, et al. Design of orthogonal polyphase code based on genetic algorithm and greedy algorithm[J]. Radar Science and Technology, 2010, 8(6): 543–548, 558. doi: 10.3969/j.issn.1672-2337.2010.06.011
    [35] DENG Hai. Discrete frequency-coding waveform design for netted radar systems[J]. IEEE Signal Processing Letters, 2004, 11(2): 179–182. doi: 10.1109/LSP.2003.821693
    [36] LIU Bo. Orthogonal discrete frequency-coding waveform set design with minimized autocorrelation sidelobes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(4): 1650–1657. doi: 10.1109/TAES.2009.5310326
    [37] STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [38] CHENG Ziyang, HE Zishu, ZHANG Shengmiao, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912–4923. doi: 10.1109/TSP.2017.2718976
    [39] LIPOR J, AHMED S, and ALOUINI M S. Fourier-based transmit beampattern design using MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2226–2235. doi: 10.1109/TSP.2014.2307838
    [40] AUBRY A, DE MAIO A, and HUANG Yongwei. MIMO radar beampattern design via PSL/ISL optimization[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3955–3967. doi: 10.1109/TSP.2016.2543207
    [41] AHMED S, THOMPSON J S, PETILLOT Y R, et al. Finite alphabet constant-envelope waveform design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2011, 59(11): 5326–5337. doi: 10.1109/TSP.2011.2163067
    [42] WANG Yongchao, WANG Xu, LIU Hongwei, et al. On the design of constant modulus probing signals for MIMO radar[J]. IEEE Transactions on Signal Processing, 2012, 60(8): 4432–4438. doi: 10.1109/TSP.2012.2197615
    [43] ZHANG Xiaojun, HE Zishu, RAYMAN-BACCHUS L, et al. MIMO radar transmit beampattern matching design[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 2049–2056. doi: 10.1109/TSP.2015.2398841
    [44] XU Haisheng, BLUM R S, WANG Jian, et al. Colocated MIMO radar waveform design for transmit beampattern formation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1558–1568. doi: 10.1109/TAES.2014.140249
    [45] CHENG Ziyang, HAN Chunlin, LIAO Bin, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549–5562. doi: 10.1109/TSP.2018.2868042
    [46] CHENG Ziyang, LIAO Bin, HE Zishu, et al. Joint design of the transmit and receive beamforming in MIMO radar systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7919–7930. doi: 10.1109/TVT.2019.2927045
    [47] DENG Minglong, CHENG Ziyang, LU Xiaoying, et al. Binary waveform design for MIMO radar with good transmit beampattern performance[J]. Electronics Letters, 2019, 55(19): 1061–1063. doi: 10.1049/el.2019.1602
    [48] AUBRY A, DEMAIO A, FARINA A, et al. Knowledge-aided (potentially cognitive) transmit signal and receive filter design in signal-dependent clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93–117. doi: 10.1109/TAES.2013.6404093
    [49] KARBASI S M, AUBRY A, DE MAIO A, et al. Robust transmit code and receive filter design for extended targets in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(8): 1965–1976. doi: 10.1109/TSP.2015.2404301
    [50] CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086
    [51] ALDAYEL O, MONGA V, and RANGASWAMY M. Successive QCQP refinement for MIMO radar waveform design under practical constraints[J]. IEEE Transactions on Signal Processing, 2016, 64(14): 3760–3774. doi: 10.1109/TSP.2016.2552501
    [52] CUI Guolong, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242
    [53] CHENG Ziyang, HE Zishu, LIAO Bin, et al. MIMO radar waveform design with PAPR and similarity constraints[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 968–981. doi: 10.1109/TSP.2017.2780052
    [54] GROSSI E and LOPS M. Space-time code design for MIMO detection based on Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2012, 58(6): 3989–4004. doi: 10.1109/TIT.2012.2189754
    [55] SONG Xiufeng, WILLETT P, ZHOU Shengli, et al. The MIMO radar and jammer games[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 687–699. doi: 10.1109/TSP.2011.2169251
    [56] TANG Bo, TANG Jun, and PENG Yingning. MIMO radar waveform design in colored noise based on information theory[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4684–4697. doi: 10.1109/TSP.2010.2050885
    [57] TANG Bo, ZHANG Yu, and TANG Jun. An efficient minorization maximization approach for MIMO radar waveform optimization via relative entropy[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 400–411. doi: 10.1109/TSP.2017.2771726
    [58] LI Jian, XU Luzhou, STOICA P, et al. Range compression and waveform optimization for MIMO radar: A Cramér-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218–232. doi: 10.1109/TSP.2007.901653
    [59] CHENG Ziyang, LIAO Bin, SHI Shengnan, et al. Co-design for overlaid MIMO radar and downlink MISO communication systems via Cramér-Rao bound minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(24): 6227–6240. doi: 10.1109/TSP.2019.2952048
    [60] YANG Yang and BLUM R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330–343. doi: 10.1109/TAES.2007.357137
    [61] HERBERT S, HOPGOOD J R, and MULGREW B. MMSE adaptive waveform design for active sensing with applications to MIMO radar[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1361–1373. doi: 10.1109/TSP.2017.2786277
    [62] STOICA P, HE Hao, and LI Jian. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1730–1740. doi: 10.1109/TSP.2011.2179652
    [63] STOICA P, HE Hao, and LI Jian. New algorithms for designing unimodular sequences with good correlation properties[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1415–1425. doi: 10.1109/TSP.2009.2012562
    [64] HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations—including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108
    [65] SONG Junxiao, BABU P, and PALOMAR D P. Sequence set design with good correlation properties via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2016, 64(11): 2866–2879. doi: 10.1109/TSP.2016.2535312
    [66] LIANG Junli, SO H C, LI Jian, et al. Unimodular sequence design based on alternating direction method of multipliers[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5367–5381. doi: 10.1109/TSP.2016.2597123
    [67] ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113
    [68] LI Yongzhe and VOROBYOV S A. Fast algorithms for designing unimodular waveform(s) with good correlation properties[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1197–1212. doi: 10.1109/TSP.2017.2787104
    [69] CHEN Chunyang. Signal processing algorithms for MIMO radar[D]. [Ph. D. dissertation], California Institute of Technology, 2009.
    [70] CHEN Yifan, NIJSURE Y, YUEN C, et al. Adaptive distributed MIMO radar waveform optimization based on mutual information[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1374–1385. doi: 10.1109/TAES.2013.6494422
    [71] ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2009.
    [72] LI Jie, LIAO Guisheng, HUANG Yan, et al. Riemannian geometric optimization methods for joint design of transmit sequence and receive filter on MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 5602–5616. doi: 10.1109/TSP.2020.3022821
    [73] SEN S. PAPR-constrained Pareto-optimal waveform design for OFDM-STAP radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3658–3669. doi: 10.1109/TGRS.2013.2274593
    [74] DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618–5629. doi: 10.1109/TSP.2008.929657
    [75] YU Xianxiang, CUI Guolong, KONG Lingjiang, et al. Constrained waveform design for colocated MIMO radar with uncertain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356–370. doi: 10.1109/TAES.2018.2852200
    [76] DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Design of phase codes for radar performance optimization with a similarity constraint[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 610–621. doi: 10.1109/TSP.2008.2008247
    [77] GRIFFITHS H, COHEN L, WATTS S, et al. Radar spectrum engineering and management: Technical and regulatory issues[J]. Proceedings of the IEEE, 2015, 103(1): 85–102. doi: 10.1109/JPROC.2014.2365517
    [78] NUNN C and MOYER L R. Spectrally-compliant waveforms for wideband radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(8): 11–15. doi: 10.1109/MAES.2012.6329156
    [79] AUBRY A, DE MAIO A, PIEZZO M, et al. Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1138–1152. doi: 10.1109/TAES.2014.120731
    [80] AUBRY A, CAROTENUTO V, and DE MAIO A. Forcing multiple spectral compatibility constraints in radar waveforms[J]. IEEE Signal Processing Letters, 2016, 23(4): 483–487. doi: 10.1109/LSP.2016.2532739
    [81] CHENG Ziyang, LIAO Bin, HE Zishu, et al. Spectrally compatible waveform design for MIMO radar in the presence of multiple targets[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3543–3555. doi: 10.1109/TSP.2018.2833818
    [82] LUO Z Q and TSENG P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. Journal of Optimization Theory and Applications, 1992, 72(1): 7–35. doi: 10.1007/BF00939948
    [83] HONG Mingyi, RAZAVIYAYN M, LUO Zhiquan, et al. A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing[J]. IEEE Signal Processing Magazine, 2016, 33(1): 57–77. doi: 10.1109/MSP.2015.2481563
    [84] SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    [85] DENG Minglong, CHENG Ziyang, WU Linlong, et al. One-Bit ADCs/DACs based MIMO radar: Performance analysis and joint design[J]. IEEE Transactions on Signal Processing, 2022, 70: 2609–2624. doi: 10.1109/TSP.2022.3176953
    [86] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [87] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [88] LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632
    [89] LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976
    [90] KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762
    [91] KUMARI P, VOROBYOV S A, and HEATH R W. Adaptive virtual waveform design for millimeter-wave joint communication-radar[J]. IEEE Transactions on Signal Processing, 2019, 68: 715–730. doi: 10.1109/TSP.2019.2956689
    [92] RESTUCCIA F. IEEE 802.11 bf: Toward ubiquitous Wi-Fi sensing[EB/OL]. https://arxiv.org/abs/2103.14918, 2021.
    [93] LI Xiang, ZHANG Daqing, LV Qin, et al. IndoTrack: Device-free indoor human tracking with commodity Wi-Fi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 72. doi: 10.1145/3130940
    [94] BEKAR M, BAKER C J, HOARE E G, et al. Joint MIMO radar and communication system using a PSK-LFM waveform with TDM and CDM approaches[J]. IEEE Sensors Journal, 2021, 21(5): 6115–6124. doi: 10.1109/JSEN.2020.3043085
    [95] WU Kai, ZHANG J A, HUANG Xiaojing, et al. Integrating secure communications into frequency hopping MIMO radar with improved data rate[J]. IEEE Transactions on Wireless Communications, 2022, 21(7): 5392–5405. doi: 10.1109/TWC.2021.3140022
    [96] DOKHANCHI S H, MYSORE B S, MISHRA K V, et al. A mmWave automotive joint radar-communications system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1241–1260. doi: 10.1109/TAES.2019.2899797
    [97] LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739
    [98] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [99] CHENG Ziyang and LIAO Bin. QoS-aware hybrid beamforming and DOA estimation in multi-carrier dual-function radar-communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1890–1905. doi: 10.1109/JSAC.2022.3155529
    [100] LI Jian, STOICA P, XU Luzhou, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968–971. doi: 10.1109/LSP.2007.905051
    [101] LEHMANN N H, FISHLER E, HAIMOVICH A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2215–2225. doi: 10.1109/TSP.2007.893220
    [102] CHEN Duofang, CHEN Baixiao, and QIN Guodong. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008, 44(12): 770–771. doi: 10.1049/el:20080276
    [103] CHEN Jinli, GU Hong, and SU Weimin. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters, 2008, 44(24): 1422–1423. doi: 10.1049/el:20089089
    [104] CHAN F K W, SO H C, HUANG Lei, et al. Parameter estimation and identifiability in bistatic multiple-input multiple-output radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2047–2056. doi: 10.1109/TAES.2015.130502
    [105] ZHANG Xiaofei, XU Lingyun, XU Lei, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced-dimension MUSIC[J]. IEEE Communications Letters, 2010, 14(12): 1161–1163. doi: 10.1109/LCOMM.2010.102610.101581
    [106] NION D and SIDIROPOULOS N D. Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2010, 58(11): 5693–5705. doi: 10.1109/TSP.2010.2058802
    [107] THAKRE A, HAARDT M, ROEMER F, et al. Tensor-based spatial smoothing (TB-SS) using multiple snapshots[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2715–2728. doi: 10.1109/TSP.2010.2043141
    [108] RAO Wei, LI Dan, and ZHANG Jianqiu. A tensor-based approach to L-shaped arrays processing with enhanced degrees of freedom[J]. IEEE Signal Processing Letters, 2018, 25(2): 1–5. doi: 10.1109/LSP.2017.2783370
    [109] HAN Keyong and NEHORAI A. Nested vector-sensor array processing via tensor modeling[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2542–2553. doi: 10.1109/TSP.2014.2314437
    [110] YAO Bobin, WANG Wenjie, and YIN Qinye. DOD and DOA estimation in bistatic non-uniform multiple-input multiple-output radar systems[J]. IEEE Communications Letters, 2012, 16(11): 1796–1799. doi: 10.1109/LCOMM.2012.091212.121605
    [111] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom[J]. IEEE Sensors Journal, 2018, 18(3): 1203–1212. doi: 10.1109/JSEN.2017.2782746
    [112] HUANG Yan, LIAO Guisheng, LI Jun, et al. Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation[J]. Multidimensional Systems and Signal Processing, 2017, 28(4): 1183–1202. doi: 10.1007/s11045-016-0387-2
    [113] ZHENG Wang, ZHANG Xiaofei, and SHI Junpeng. Sparse extension array geometry for DOA estimation with nested MIMO radar[J]. IEEE Access, 2017, 5: 9580–9586. doi: 10.1109/ACCESS.2017.2710212
    [114] YANG Minglei, SUN Lei, YUAN Xin, et al. A new nested MIMO array with increased degrees of freedom and hole-free difference coarray[J]. IEEE Signal Processing Letters, 2018, 25(1): 40–44. doi: 10.1109/LSP.2017.2766294
    [115] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5835–5848. doi: 10.1109/TVT.2019.2913437
    [116] SHI Junpeng, WEN Fangqing, and LIU Tianpeng. Nested MIMO radar: Coarrays, tensor modeling, and angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 573–585. doi: 10.1109/TAES.2020.3034012
    [117] WANG Xianpeng, HUANG Mengxing, and WAN Liangtian. Joint 2D-DOD and 2D-DOA estimation for coprime EMVS-MIMO radar[J]. Circuits, Systems, and Signal Processing, 2021, 40(6): 2950–2966. doi: 10.1007/s00034-020-01605-5
    [118] ZHENG Guimei. DOA estimation in MIMO radar with non-perfectly orthogonal waveforms[J]. IEEE Communications Letters, 2017, 21(2): 414–417. doi: 10.1109/LCOMM.2016.2622691
    [119] LIAO Bin. Fast angle estimation for MIMO radar with nonorthogonal waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 2091–2096. doi: 10.1109/TAES.2018.2847958
    [120] WEN Fangqing. Computationally efficient DOA estimation algorithm for MIMO radar with imperfect waveforms[J]. IEEE Communications Letters, 2019, 23(6): 1037–1040. doi: 10.1109/LCOMM.2019.2911285
    [121] CHEN Peng, CAO Zhenxin, CHEN Zhimin, et al. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 208–220. doi: 10.1109/TSP.2018.2881663
    [122] LIU Tingting, WEN Fangqing, ZHANG Lei, et al. Off-grid DOA estimation for colocated MIMO radar via reduced-complexity sparse Bayesian learning[J]. IEEE Access, 2019, 7: 99907–99916. doi: 10.1109/ACCESS.2019.2930531
    [123] CONG Jingyu, WANG Xianpeng, HUANG Mengxing, et al. Robust DOA estimation method for MIMO radar via deep neural networks[J]. IEEE Sensors Journal, 2021, 21(6): 7498–7507. doi: 10.1109/JSEN.2020.3046291
    [124] MA Yugang, ZENG Yonghong, and SUN Sumei. A deep learning based super resolution DoA estimator with single snapshot MIMO radar data[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4142–4155. doi: 10.1109/TVT.2022.3151674
    [125] BEKKERMAN I and TABRIKIAN J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873–3883. doi: 10.1109/TSP.2006.879267
    [126] XU Luzhou, LI Jian, and STOICA P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 927–939. doi: 10.1109/TAES.2008.4655353
    [127] TANG Jun, LI Ning, WU Yong, et al. On detection performance of MIMO radar: A relative entropy-based study[J]. IEEE Signal Processing Letters, 2009, 16(3): 184–187. doi: 10.1109/LSP.2008.2011704
    [128] CUI Guolong, KONG Lingjiang, and YANG Xiaobo. Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter[J]. Circuits, Systems, and Signal Processing, 2012, 31(4): 1407–1422. doi: 10.1007/s00034-011-9381-y
    [129] LIU Weijian, WANG Yongliang, LIU Jun, et al. Adaptive detection without training data in colocated MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2469–2479. doi: 10.1109/TAES.2015.130754
    [130] LIU Jun, ZHOU Shenghua, LIU Weijian, et al. Tunable adaptive detection in colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2018, 66(4): 1080–1092. doi: 10.1109/TSP.2017.2778693
    [131] LIU Jun, HAN Jinwang, ZHANG Zijing, et al. Bayesian detection for MIMO radar in Gaussian clutter[J]. IEEE Transactions on Signal Processing, 2018, 66(24): 6549–6559. doi: 10.1109/TSP.2018.2879038
    [132] LIU Jun, HAN Jinwang, LIU Weijian, et al. Persymmetric Rao test for MIMO radar in Gaussian disturbance[J]. Signal Processing, 2019, 165: 30–36. doi: 10.1016/j.sigpro.2019.06.028
    [133] LIU Jun, HAN Jinwang, ZHANG Zijing, et al. Target detection exploiting covariance matrix structures in MIMO radar[J]. Signal Processing, 2019, 154: 174–181. doi: 10.1016/j.sigpro.2018.07.013
    [134] LIU Jun and LI Jian. Robust detection in MIMO radar with steering vector mismatches[J]. IEEE Transactions on Signal Processing, 2019, 67(20): 5270–5280. doi: 10.1109/TSP.2019.2939078
    [135] FORTUNATI S, SANGUINETTI L, GINI F, et al. Massive MIMO radar for target detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 859–871. doi: 10.1109/TSP.2020.2967181
    [136] AHMED A M, AHMAD A A, FORTUNATI S, et al. A reinforcement learning based approach for multitarget detection in massive MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2622–2636. doi: 10.1109/TAES.2021.3061809
    [137] LISI F, FORTUNATI S, GRECO M S, et al. Enhancement of a state-of-the-art RL-based detection algorithm for Massive MIMO radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022.
    [138] YAN Junkun, LIU Hongwei, JIU Bo, et al. Simultaneous multibeam resource allocation scheme for multiple target tracking[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3110–3122. doi: 10.1109/TSP.2015.2417504
    [139] YAN Junkun, JIU Bo, LIU Hongwei, et al. Prior knowledge-based simultaneous multibeam power allocation algorithm for cognitive multiple targets tracking in clutter[J]. IEEE Transactions on Signal Processing, 2015, 63(2): 512–527. doi: 10.1109/TSP.2014.2371774
    [140] YUAN Ye, YI Wei, HOSEINNEZHAD R, et al. Robust power allocation for resource-aware multi-target tracking with colocated MIMO radars[J]. IEEE Transactions on Signal Processing, 2020, 69: 443–458. doi: 10.1109/TSP.2020.3047519
    [141] ZHANG Haowei, LIU Weijian, ZONG Binfeng, et al. An efficient power allocation strategy for maneuvering target tracking in cognitive MIMO radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 1591–1602. doi: 10.1109/TSP.2020.3047227
    [142] SHI Yuchun, JIU Bo, YAN Junkun, et al. Data-driven simultaneous multibeam power allocation: When multiple targets tracking meets deep reinforcement learning[J]. IEEE Systems Journal, 2021, 15(1): 1264–1274. doi: 10.1109/JSYST.2020.2984774
    [143] YUAN Ye, YI Wei, KIRUBARAJAN T, et al. Scaled accuracy based power allocation for multi-target tracking with colocated MIMO radars[J]. Signal Processing, 2019, 158: 227–240. doi: 10.1016/j.sigpro.2019.01.014
    [144] SHARAGA N, TABRIKIAN J, and MESSER H. Optimal cognitive beamforming for target tracking in MIMO radar/sonar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1440–1450. doi: 10.1109/JSTSP.2015.2467354
    [145] LI Zhengjie, XIE Junwei, ZHANG Haowei, et al. Joint beam selection and power allocation in cognitive collocated MIMO radar for potential guidance application under oppressive jamming[J]. Digital Signal Processing, 2022, 127: 103579. doi: 10.1016/j.dsp.2022.103579
    [146] ZHANG Haowei, ZONG Binfeng, and XIE Junwei. Power and bandwidth allocation for multi-target tracking in collocated MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9795–9806. doi: 10.1109/TVT.2020.3002899
    [147] ZHANG Haowei, LIU Weijian, XIE Junwei, et al. Space-time allocation for transmit beams in collocated MIMO radar[J]. Signal Processing, 2019, 164: 151–162. doi: 10.1016/j.sigpro.2019.04.003
    [148] ZHANG Haowei, XIE Junwei, SHI Junpeng, et al. Joint beam and waveform selection for the MIMO radar target tracking[J]. Signal Processing, 2019, 156: 31–40. doi: 10.1016/j.sigpro.2018.09.009
    [149] CHENG Ting, LI Shuyi, and ZHANG Jie. Adaptive resource management in multiple targets tracking for co‐located multiple input multiple output radar[J]. IET Radar, Sonar & Navigation, 2018, 12(9): 1038–1045. doi: 10.1049/iet-rsn.2018.5153
    [150] SU Yang, CHENG Ting, HE Zishu, et al. Adaptive simultaneous multibeam resource management for colocated MIMO radar in multiple targets tracking[J]. Signal Processing, 2020, 172: 107543. doi: 10.1016/j.sigpro.2020.107543
    [151] LI Xi, CHENG Ting, SU Yang, et al. Joint time-space resource allocation and waveform selection for the collocated MIMO radar in multiple targets tracking[J]. Signal Processing, 2020, 176: 107650. doi: 10.1016/j.sigpro.2020.107650
    [152] YAN Junkun, LIU Hongwei, PU Wenqiang, et al. Joint beam selection and power allocation for multiple target tracking in netted colocated MIMO radar system[J]. IEEE Transactions on Signal Processing, 2016, 64(24): 6417–6427. doi: 10.1109/TSP.2016.2607147
    [153] YI Wei, YUAN Ye, HOSEINNEZHAD R, et al. Resource scheduling for distributed multi-target tracking in netted colocated MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2020, 68: 1602–1617. doi: 10.1109/TSP.2020.2976587
    [154] SU Yang, CHENG Ting, HE Zishu, et al. Joint waveform control and resource optimization for maneuvering targets tracking in netted colocated MIMO radar systems[J]. IEEE Systems Journal, 2021.
    [155] LU Yanxi, HAN Chunlin, HE Zishu, et al. Adaptive JSPA in distributed colocated MIMO radar network for multiple targets tracking[J]. IET Radar, Sonar & Navigation, 2019, 13(3): 410–419. doi: 10.1049/iet-rsn.2018.5278
    [156] SUN Hao, LI Ming, ZUO Lei, et al. Resource allocation for multitarget tracking and data reduction in radar network with sensor location uncertainty[J]. IEEE Transactions on Signal Processing, 2021, 69: 4843–4858. doi: 10.1109/TSP.2021.3101018
    [157] WANG Ting, ZHAO Yongjun, HUANG Jie, et al. A reduced-rank STAP algorithm for simultaneous clutter plus jamming suppression in airborne MIMO radar[C]. 2017 18th International Radar Symposium, Prague, 2017: 1–10.
    [158] 郭艺夺, 宫健, 黄大荣, 等. 机载MIMO雷达收发联合降维STAP算法统一理论框架[J]. 雷达学报, 2016, 5(5): 517–525. doi: 10.12000/JR16108

    GUO Yiduo, GONG Jian, HUANG Darong, et al. Unified theoretical frame of a joint transmitter-receiver reduced dimensional STAP method for an airborne MIMO radar[J]. Journal of Radars, 2016, 5(5): 517–525. doi: 10.12000/JR16108
    [159] ZHAO Xiang, HE Zishu, WANG Yikai, et al. Reduced-dimension STAP using a modified generalised sidelobe canceller for collocated MIMO radars[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1476–1483. doi: 10.1049/iet-rsn.2018.5239
    [160] PANG Xiaojiao, ZHAO Yongbo, CAO Chenghu, et al. Joint design of transmit beamspace and reduced‐dimension receiver filter for MIMO radar STAP[J]. IET Radar, Sonar & Navigation, 2021, 15(6): 655–665. doi: 10.1049/rsn2.12077
    [161] WARD J. Space-time adaptive processing for airborne radar[R]. Tech. Rep. 1015, 1994.
    [162] WANG Guohua and LU Yilong. Clutter rank of STAP in MIMO radar with waveform diversity[J]. IEEE Transactions on Signal Processing, 2010, 58(2): 938–943. doi: 10.1109/TSP.2009.2031301
    [163] FENG Weike, ZHANG Yongshun, and HE Xingyu. Complexity reduction and clutter rank estimation for MIMO-phased STAP radar with subarrays at transmission[J]. Digital Signal Processing, 2017, 60: 296–306. doi: 10.1016/j.dsp.2016.10.004
    [164] FENG Weike, ZHANG Yongshun, and HE Xingyu. Clutter rank estimation for reduce-dimension space-time adaptive processing MIMO radar[J]. IEEE Sensors Journal, 2017, 17(2): 238–239. doi: 10.1109/JSEN.2016.2632308
    [165] ZHOU Yan, CHEN Xiaoxuan, LI Yanyan, et al. A fast STAP method using persymmetry covariance matrix estimation for clutter suppression in airborne MIMO radar[J]. EURASIP Journal on Advances in Signal Processing, 2019, 2019(1): 13. doi: 10.1186/s13634-019-0610-z
    [166] HUANG Junsheng, SU Hongtao, and YANG Yang. Low-complexity robust adaptive beamforming method for MIMO radar based on covariance matrix estimation and steering vector mismatch correction[J]. IET Radar, Sonar & Navigation, 2019, 13(5): 712–720. doi: 10.1049/iet-rsn.2018.5416
    [167] SALARI S, CHAN F, CHAN Y T, et al. Joint DOA and clutter covariance matrix estimation in compressive sensing MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 318–331. doi: 10.1109/TAES.2018.2850459
    [168] BRELOY A, GINOLHAC G, GAO Yongchan, et al. MIMO filters based on robust rank-constrained Kronecker covariance matrix estimation[J]. Signal Processing, 2021, 187: 108116. doi: 10.1016/j.sigpro.2021.108116
    [169] SUN Guohao, LI Ming, TONG Jun, et al. Structured clutter covariance matrix estimation for airborne MIMO radar with limited training data[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 3500905. doi: 10.1109/LGRS.2020.3027818
    [170] XUE Ming, ROBERTS W, LI Jian, et al. MIMO radar sparse angle-Doppler imaging for ground moving target indication[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 553–558.
    [171] TANG Bo and TANG Jun. Joint design of transmit waveforms and receive filters for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4707–4722. doi: 10.1109/TSP.2016.2569431
    [172] NOSRATI H, ABOUTANIOS E, and SMITH D. Multi-stage antenna selection for adaptive beamforming in MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 1374–1389. doi: 10.1109/TSP.2020.2973544
    [173] O’ROURKE S M, SETLUR P, RANGASWAMY M, et al. Quadratic semidefinite programming for waveform-constrained joint filter-signal design in STAP[J]. IEEE Transactions on Signal Processing, 2020, 68: 1744–1759. doi: 10.1109/TSP.2020.2977271
    [174] SUN Guohao, HE Zishu, TONG Jun, et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 2909–2921. doi: 10.1109/TGRS.2020.3008320
    [175] LI Zhihui, TANG Bo, SHI Junpeng, et al. Maximin joint design of transmit waveform and receive filter bank for MIMO-STAP radar under target uncertainties[J]. IEEE Signal Processing Letters, 2022, 29: 179–183. doi: 10.1109/LSP.2021.3131092
    [176] LI Zhihui, SHI Junpeng, LIU Weijian, et al. Robust joint design of transmit waveform and receive filter for MIMO-STAP radar under target and clutter uncertainties[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1156–1171. doi: 10.1109/TVT.2021.3135513
    [177] LI Zhihui, MAO Yunxiang, ZHOU Qingsong, et al. Joint design of transmit beamforming and receive filter for transmit subaperturing MIMO STAP radar[J]. Multidimensional Systems and Signal Processing, 2022, 33(1): 143–165. doi: 10.1007/s11045-021-00790-z
    [178] ZHOU Qingsong, LI Zhihui, MAO Yunxiang, et al. Robust joint design of transmit beamforming and receive filter for TB-MIMO STAP radar[J]. Wireless Personal Communications, 2022: 1–14. doi: 10.1007/s11277-022-09733-8
    [179] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934
    [180] LIU Shangwen, ZHANG Zenghui, and YU Wenxian. A space-time coding scheme with time and frequency comb-like chirp waveforms for MIMO-SAR[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 391–403. doi: 10.1109/JSTSP.2016.2631945
    [181] QIN Lilong, VOROBYOV S A, and DONG Zhen. Joint cancelation of autocorrelation sidelobe and cross correlation in MIMO-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 931–935. doi: 10.1109/LGRS.2017.2688122
    [182] WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030
    [183] ZHU Rongqiang, ZHOU Jianxiong, JIANG Ge, et al. Range migration algorithm for near-field MIMO-SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2280–2284. doi: 10.1109/LGRS.2017.2761838
    [184] ZHANG Wenji and HOORFAR A. A generalized approach for SAR and MIMO radar imaging of building interior targets with compressive sensing[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1052–1055. doi: 10.1109/LAWP.2015.2394746
    [185] WANG Yong and LI Xuelu. 3-D imaging based on combination of the ISAR technique and a MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6033–6054. doi: 10.1109/TGRS.2018.2829912
    [186] WANG Dangwei, MA Xiaoyan, CHEN A L, et al. High-resolution imaging using a wideband MIMO radar system with two distributed arrays[J]. IEEE Transactions on Image Processing, 2010, 19(5): 1280–1289. doi: 10.1109/TIP.2009.2039623
    [187] MA Changzheng, YEO T S, TAN C S, et al. Three-dimensional imaging of targets using colocated MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3009–3021. doi: 10.1109/TGRS.2011.2119321
    [188] TAN Xing, ROBERTS W, LI Jian, et al. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088–1101. doi: 10.1109/TSP.2010.2096218
    [189] DICKMANN J, KLAPPSTEIN J, HAHN M, et al. Automotive radar the key technology for autonomous driving: From detection and ranging to environmental understanding[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    [190] ZHANG Wei, WANG Ping, HE Ningyu, et al. Super resolution DOA based on relative motion for FMCW automotive radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8698–8709. doi: 10.1109/TVT.2020.2999640
    [191] PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914
    [192] ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350
    [193] ZHANG Wei, HE Ningyu, HE Zishu, et al. Approach of 2D direction of arrival estimation of FMCW traffic radar by utilising 1D array[J]. Electronics Letters, 2020, 56(2): 97–99. doi: 10.1049/el.2019.3072
    [194] HU Xueyao, LI Yang, LU Man, et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3672–3685. doi: 10.1109/TVT.2019.2900357
    [195] PFEFFER C, FEGER R, WAGNER C, et al. FMCW MIMO radar system for frequency-division multiple TX-beamforming[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4262–4274. doi: 10.1109/TMTT.2013.2287675
    [196] SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099
    [197] GUERMANDI D, SHI Qixian, DEWILDE A, et al. A 79-GHz 2×2 MIMO PMCW radar SoC in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2017, 52(10): 2613–2626. doi: 10.1109/JSSC.2017.2723499
    [198] FUCHS J, GARDILL M, LÜBKE M, et al. A machine learning perspective on automotive radar direction of arrival estimation[J]. IEEE Access, 2022, 10: 6775–6797. doi: 10.1109/ACCESS.2022.3141587
    [199] LIU Zhenyu, WU Jiayan, YANG Siyuan, et al. DOA estimation method based on EMD and MUSIC for mutual interference in FMCW automotive radars[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3504005. doi: 10.1109/LGRS.2021.3058729
    [200] LIN Jiaying, DIEKMANN P, FRAMING C E, et al. Maritime environment perception based on deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022.
    [201] ZHENG Chundi, CHEN Huihui, and WANG Aiguo. High angular resolution for 77GHz FMCW radar via a sparse weighted quadratic minimization[J]. IEEE Sensors Journal, 2021, 21(9): 10637–10646. doi: 10.1109/JSEN.2021.3060428
    [202] LI Bin, WANG Shusen, FENG Zhiyong, et al. Fast pseudospectrum estimation for automotive massive MIMO radar[J]. IEEE Internet of Things Journal, 2021, 8(20): 15303–15316. doi: 10.1109/JIOT.2021.3052512
    [203] BIALER O, JONAS A, and TIRER T. Super resolution wide aperture automotive radar[J]. IEEE Sensors Journal, 2021, 21(16): 17846–17858. doi: 10.1109/JSEN.2021.3085677
    [204] ZHANG Shuimei, AHMED A, ZHANG Y D, et al. Enhanced DOA estimation exploiting multi-frequency sparse array[J]. IEEE Transactions on Signal Processing, 2021, 69: 5935–5946. doi: 10.1109/TSP.2021.3122292
    [205] SUN Shunqiao and ZHANG Y D. 4D automotive radar sensing for autonomous vehicles: A sparsity-oriented approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 879–891. doi: 10.1109/JSTSP.2021.3079626
    [206] WANG Hui, CHEN Xiang, and SUN Jiazheng. FMCW SAR imaging algorithm of sliding spotlight mode[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4020205. doi: 10.1109/LGRS.2021.3119848
    [207] WANG Shuai, WANG Bingnan, XIANG Maosheng, et al. Signal modeling and imaging of frequency-modulated continuous wave sliding spotlight synthetic aperture Ladar[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 4007305. doi: 10.1109/LGRS.2020.3043747
    [208] LEE W H and LEE S. Geometric sequence decomposition-based interference cancellation in automotive radar systems[J]. IEEE Access, 2022, 10: 4318–4327. doi: 10.1109/ACCESS.2022.3141543
    [209] KIM G, MUN J, and LEE J. A peer-to-peer interference analysis for automotive chirp sequence radars[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8110–8117. doi: 10.1109/TVT.2018.2848898
    [210] ROCK J, ROTH W, TOTH M, et al. Resource-efficient deep neural networks for automotive radar interference mitigation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 927–940. doi: 10.1109/JSTSP.2021.3062452
    [211] BOSE A, TANG Bo, SOLTANALIAN M, et al. Mutual interference mitigation for multiple connected automotive radar systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11062–11066. doi: 10.1109/TVT.2021.3108714
    [212] WANG Yong, SHU Yuhong, JIA Xiuqian, et al. Multifeature fusion-based hand gesture sensing and recognition system[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3507005. doi: 10.1109/LGRS.2021.3086136
    [213] CHENG Yuwei and LIU Yimin. Person reidentification based on automotive radar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5101913. doi: 10.1109/TGRS.2021.3073664
    [214] SHI Kun, SHI Zhiguo, YANG Chaoqun, et al. Road-map aided GM-PHD filter for multivehicle tracking with automotive radar[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 97–108. doi: 10.1109/TII.2021.3073032
  • 期刊类型引用(26)

    1. 刘畅宇,张浩,耿芳琳,白忠瑞,王鹏,李振锋,杜利东,陈贤祥,方震. 基于距离抽头重构的生理雷达动态解调算法. 雷达学报(中英文). 2025(01): 135-150 . 百度学术
    2. 赵翔,王威,李晨洋,关建,李刚. 基于毫米波雷达微动信号和脉搏波数据融合的睡眠呼吸暂停低通气综合征筛查技术. 雷达学报(中英文). 2025(01): 102-116 . 百度学术
    3. 武赟,张东恒,张淦霖,谢学诚,詹丰全,陈彦. 智能反射表面辅助的WiFi呼吸感知. 雷达学报(中英文). 2025(01): 189-203 . 百度学术
    4. 黄帅铭,朱晓华,王武斌,赵恒,洪弘. U-Sodar:基于超声波雷达的非接触生命体征检测技术. 雷达学报(中英文). 2025(01): 168-188 . 百度学术
    5. 田雨,王舒怡,赵博衡,方震,杨杰. 基于毫米波雷达的中医情志数据科学化探析. 中华中医药学刊. 2025(02): 12-15+259-260 . 百度学术
    6. 张冰洋,黄霞. 连续波生物雷达生命体征检测平台与实验研究. 中国现代教育装备. 2024(01): 77-79+83 . 百度学术
    7. 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 . 百度学术
    8. 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 . 百度学术
    9. 韩丽有,谭钦红,刘家森. 基于CNN-BiLSTM的FMCW雷达生命体征信号检测. 激光杂志. 2024(03): 68-73 . 百度学术
    10. 屈乐乐,杨研. 基于MIMO-FMCW雷达的多人生命体征检测. 雷达科学与技术. 2024(03): 247-254+264 . 百度学术
    11. 郭洪瑞,曹汇敏,杨克奇,张朱珊莹. 基于多通道雷达数据融合的人体心率精准测量. 生物医学工程学杂志. 2024(03): 461-468 . 百度学术
    12. 王超超,胡钧益,蒋治国,张先超. SCG信号处理与应用研究进展. 传感技术学报. 2024(06): 923-940 . 百度学术
    13. 杨天虹,屈乐乐. 基于FMCW毫米波雷达的人体生命体征检测实验设计. 实验室研究与探索. 2024(06): 60-65 . 百度学术
    14. 姬丽静,郭书文,刘瑞霞,秦钰锦,徐蔚,虞青松. 重复作业人机工程风险监测评估研究综述. 机械设计. 2024(09): 149-155 . 百度学术
    15. 邹优敏,俞卫锋,罗恒,蔡端芳,谭友果. 基于多普勒效应的非接触式呼吸探测传感器研究. 电子元件与材料. 2024(08): 938-943 . 百度学术
    16. 张冰洋,高军峰,张宇,黄龙,付君雅,曹书琪,赵小玉. 基于雷达传感器的非接触式睡眠呼吸检测系统设计. 现代电子技术. 2024(22): 7-11 . 百度学术
    17. 倪杰,王勇,杨小龙,聂伟,张茜,罗朗娟. 基于毫米波雷达的心率变异性检测方法. 移动通信. 2024(12): 103-115 . 百度学术
    18. 黄育夫,高旭. 基于毫米波雷达的睡眠监控技术研究. 家电科技. 2024(S1): 479-483 . 百度学术
    19. 陈佳欣,李灿航,刘美,孟亚男. 基于FMCW雷达的人体活动感知综述. 广东石油化工学院学报. 2024(06): 42-48 . 百度学术
    20. 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 . 百度学术
    21. 麦超云,王占,洪晓纯,黄传好,刘子明. GSWOA-VMD在毫米波雷达非接触式生命体征检测中的应用. 现代电子技术. 2023(16): 69-74 . 百度学术
    22. 刘梓隆,林志伟,张利,何华斌,蔡志明. 基于呼吸心跳时序混叠信号的毫米波雷达身份识别. 闽南师范大学学报(自然科学版). 2023(03): 107-115 . 百度学术
    23. 卢赛虎,张浩,牟岫影,王鹏,杜利东,陈贤祥,黄可,杨汀,方震. 慢阻肺数字疗法探讨. 生物医学工程研究. 2023(03): 279-284 . 百度学术
    24. 黄政钦,刘铭华,陈文骏. 非接触式生理参数检测系统的设计与实现. 科技创新与应用. 2023(34): 48-52 . 百度学术
    25. 何鹏宇,卓智海. 基于VMD-SWT联合算法的FMCW雷达生命体征检测. 北京信息科技大学学报(自然科学版). 2023(06): 41-47 . 百度学术
    26. 郑铭凯,饶彬,王伟. 基于超宽带冲激雷达的人体动作识别和心率估计数据集. 中国科学数据(中英文网络版). 2023(04): 484-495 . 百度学术

    其他类型引用(31)

  • 加载中
图(5)
计量
  • 文章访问数: 3431
  • HTML全文浏览量: 4114
  • PDF下载量: 980
  • 被引次数: 57
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-07-27
  • 网络出版日期:  2022-08-18
  • 刊出日期:  2022-10-28

目录

/

返回文章
返回