Processing math: 17%

多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略

陈辉 魏凤旗 韩崇昭

高畅, 谷丰登, 严俊坤, 等. 多普勒信息辅助的网络化雷达融合检测[J]. 雷达学报, 2023, 12(3): 500–515. doi: 10.12000/JR22220
引用本文: 陈辉, 魏凤旗, 韩崇昭. 多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略[J]. 雷达学报, 2023, 12(3): 529–540. doi: 10.12000/JR22116
GAO Chang, GU Fengdeng, YAN Junkun, et al. Fusion detection for networked radar aided by Doppler information[J]. Journal of Radars, 2023, 12(3): 500–515. doi: 10.12000/JR22220
Citation: CHEN Hui, WEI Fengqi, and HAN Chongzhao. UAV path planning strategy based on threat avoidance in multiple extended target tracking optimization[J]. Journal of Radars, 2023, 12(3): 529–540. doi: 10.12000/JR22116

多扩展目标跟踪优化中基于威胁规避的无人机路径规划策略

DOI: 10.12000/JR22116
基金项目: 国家自然科学基金项目(62163023, 62173266, 62103318, 61873116),甘肃省教育厅产业支撑计划项目(2021CYZC-02)
详细信息
    作者简介:

    陈 辉,博士,教授,博士生导师,主要研究方向为雷达目标跟踪、数据融合与电子对抗等

    魏凤旗,硕士生,研究方向为数据融合与多目标跟踪技术

    韩崇昭,教授,主要研究方向为多源信息融合、随机控制与自适应控制、非线性频谱分析等

    通讯作者:

    陈辉 huich78@hotmail.com

  • 责任主编:易伟 Corresponding Editor: YI Wei
  • 中图分类号: TP274

UAV Path Planning Strategy Based on Threat Avoidance in Multiple Extended Target Tracking Optimization

Funds: The National Natural Science Foundation of China (62163023, 62173266, 62103318, 61873116), The Industrial Support Project of Education Department of Gansu Province (2021CYZC-02)
More Information
  • 摘要: 为了降低无人机执行侦察任务时被摧毁的概率,该文提出一种有效减少威胁的路径规划算法。首先利用高分辨率机载雷达对多扩展目标进行稳健的跟踪估计,然后根据三向决策规则对各目标按威胁进行分类,并利用模糊理想解相似性排序技术(TOPSIS)的方法计算目标威胁度,综合多任务决策联合优化(联合评估目标威胁度和目标跟踪质量)作为评价准则对无人机进行路径规划。仿真实验表明,模糊威胁度评估方法在多扩展目标跟踪环境下是有效的,所提无人机路径规划算法是合理的,在不损失目标跟踪精度的条件下有效降低了目标威胁度。

     

  • 雷达的基本用途是利用电磁波对物体或者物理现象进行检测,在国土防御、气象预测以及航空航天等领域发挥着极其重要的作用[1,2]。受限于发射增益、阵列孔径等因素,单雷达站难以满足广域和高精度目标探测的需求,面对日益复杂的电磁环境、高超声速飞行器、隐身飞机等威胁的应对措施有限[3,4]。将多雷达站组网进行协同探测具有空间分集、频域分集、抗毁伤等优势,如何充分利用各雷达站观测信息、提升目标探测性能是近些年的研究热点之一[5-9]

    根据传送数据类型及布站方式的不同,常见的网络化雷达融合检测系统可分为分布式检测系统和集中式检测系统。分布式检测系统通常指各雷达站在对原始接收信息进行局部处理后,将处理结果传送至融合中心进行进一步处理[10]。而集中式检测系统则是将各雷达站接收的原始数据信息传送到融合中心进行融合处理[11]。本文考虑的网络化雷达系统由空间中多个雷达站和融合中心构成,各雷达站将接收到的原始回波数据或局部处理后的回波信息传送至融合中心,融合中心基于这些数据利用特定的融合检测算法给出检测结果,如图1所示[12]

    图  1  网络化雷达融合检测系统
    Figure  1.  Networked radar fusion detection system

    传统的融合检测算法通常利用各雷达站基于同一共视区域接收回波的幅度信息进行融合处理,并以此来提高检测性能。融合检测技术发展至今,Conte, D’addio等人[13,14]分别研究了基于局部判决结果的融合检测算法。他们推导得到了在不同类型的目标和干扰下,利用“取或”(OR)准则作为融合检测算法准则的最优和次优接收器。Thomopoulos等人[15]研究了基于固定门限的融合检测算法,并进一步将雷达站的检测结果与其对应的数据质量进行了融合。Mathur和Willett[16]着重研究了基于雷达站原始回波数据的融合检测技术,他们研究了高斯白噪声背景下Swerling I 和III目标起伏模型下融合检测性能,并推导了两种目标起伏模型对应最优、次优及求和规则检测器,并研究了局部信噪比对融合检测性能的影响。可以看出,传统的融合检测算法大多仅依据目标回波幅度信息进行判决,而未考虑相干系统中能够获取并使用的多普勒信息。2013年以来,有学者将多普勒信息与空间位置观测的耦合性应用于多帧检测,有效提高了目标与虚警之间的可分性[17-19],但该方法并未考虑多普勒信息在网络化雷达系统中的应用。

    因此,为了充分利用相干雷达系统的多普勒观测信息来提升网络化雷达融合检测性能,本文提出了多普勒信息辅助的融合检测算法。考虑到网络化雷达系统中,不同雷达系统观测到目标的空间位置与径向速度应当满足一定的物理约束,而虚警随机的径向速度较难满足这种约束关系,因此可利用此性质对目标与虚警进行区分[20,21]。换言之,在网络化雷达融合检测过程中利用多普勒信息能够在恒定虚警概率的前提下降低检测门限,进而提升目标检测概率。对雷达站数量不同、雷达布站位置不同以及目标位置不同条件下的仿真实验均表明,本文所提方法与仅基于幅度信息融合检测的传统算法相比,能够有效提升检测性能。

    假设一网络化雷达系统包含N个雷达站,第i个雷达站观测到回波数据为{Xi,{Yi,j}nj=1},其中,Xi表示待检测单元的信号功率,Yi,j表示参考单元的信号功率,n表示参考单元个数。假设影响网络化雷达系统检测性能的因素主要为接收机内噪声,变换到基带后其均为复高斯白噪声。此外,假设影响各雷达站观测的背景噪声分布均匀,各观测值相互独立。不失一般性地,假定目标雷达散射截面积服从Swerling I型起伏模型,在该模型下检测问题可表述为[16]

    H0:XifXi,H0(x)=1μiexp(xμi)u(x)H1:XifXi,H1(x)=1μi(1+ζi)×exp(xμi(1+ζi))u(x)Yi,jfYi,j(y)=1μiexp(xμi)u(y)i=1,2,,N;j=1,2,,N} (1)

    其中,u()表示阶跃函数,ζi表示第i个雷达站接收信号的信噪比,μi表示第i个雷达站所处环境的噪声功率,H0H1分别表示目标是否存在的假设。

    此处假设各雷达站获取的观测相互独立。需要注意的是,由于本文所提空间位置与多普勒信息组成的约束与基于幅度信息的融合检测相互独立地实施,因此本文所提算法也可适用于各雷达站回波具有相关性的场景,在该场景下,将相应基于幅度信息的融合检测算法设计为能够应对各雷达站观测具有相关性的算法即可[22,23]。参考单元平均恒虚警算法,雷达系统接收机内噪声功率μi通过参考单元信号估计得到:

    ˆμi=1nnj=1Yi,j (2)

    基于此估计值以及检测单元的功率观测值Xi可构造各局部雷达站的检验统计量:

    Zi=Xiˆμi (3)

    此时式(1)所述的目标检测问题可表述为

    H0:ZifZi,H0(z)=nn+1(n+z)n+1u(z)H1:ZifZi,H1(z)=nn+1(1+ζi)n[n(1+ζi)+z]n+1u(z) (4)

    根据Neyman-Pearson准则,融合中心的最优融合检验统计量为

    Topt(Z)=(n+1)Ni=1[ln(1+Zin)ln(1+Zin(1+ζi))] (5)

    当参考窗长n接近无穷大时,式(5)趋近于:

    limnTopt(Z)=T1(Z)=Ni=1(ζi1+ζi)Zi (6)

    可以看到,次优融合检测器(6)是对检验统计量Zi的加权求和,权重与其信噪比呈正相关。当各雷达站目标的信噪比值ζi1,i=1,2,,N时,基于式(6)可以得到形式更为简洁的融合检测器:

    Tsum(Z)=Ni=1Zi (7)

    融合检测器相当于将各雷达站的检验统计量进行非相干积累,其优点在于不需要信噪比ζi的先验值,并且当各雷达站观测目标信噪比相同时,该检测器等价于最优融合检测器Topt

    传统融合检测算法主要基于各雷达站观测的回波幅度信息,并利用融合检测算法来进行目标检测,而未利用到相干系统中的多普勒信息,即径向速度信息。在实际应用中,目标的运动与其位置、多雷达站观测到同一目标的径向速度之间通常存在一定的耦合性[19]。但是对于本文所关注的虚警而言,由于其源于接收机内噪声,其量测在雷达观测的距离-方位-多普勒数据矩阵中随机分布,因此多雷达站观测的虚警与虚警之间以及虚警与目标之间存在这种耦合性的概率通常较低。本文正是基于这种考虑提出多普勒信息辅助的融合检测算法,对传统仅基于幅度信息的融合检测结果进行二次判断,利用多雷达站观测信息的冗余性提高融合检测性能。

    假设在二维空间中存在一个运动目标,速度为vtar=(vx,vy),相对于第i(i=1,2,,N)个雷达站的方位角为θTi,径向速度为vTi,则根据速度投影关系得到:

    vxcos(θTi)+vysin(θTi)=vTi (8)

    在实际雷达应用场景中,速度和角度的量测都具有一定的误差,并且考虑速度模糊的因素,第i个雷达观测到目标的角度和速度值为

    θOi=θTiΔθivOi=vTikivDiΔviki{K,K+1,,K}} (9)

    其中,Δθi,Δvi表示角度与速度的量测误差,vDi表示雷达系统的模糊速度,ki表示速度模糊数,m0是根据雷达基本参数确定的目标速度最大模糊数。将式(8)中θTi,vTi替换为观测值θOi,vOi,由于误差的存在可能会导致原方程无法成立,此时式(8)左侧式子的值为

    Li=vxcos(θOi)+vysin(θOi)=vxcos(θOi)+vysin(θOi)[vxcos(θTi)+vysin(θTi)vTi]=vxcos(θOi)+vysin(θOi)[vxcos(θOi+Δθi)+vysin(θOi+Δθi)](vOi+kivDi+Δvi) (10)

    由于误差值Δθi,Δvi通常是微小量,对式(10)最后一个等号右端中括号里面的正余弦函数进行1阶泰勒展开并省略余项可得关于(vx,vy)的线性形式:

    Li = vxcos(θOi)+vysin(θOi)vx[cos(θOi)sin(θOi)Δθi]vy[sin(θOi+cos(θOi)Δθi)]+vOi+Δvi+kivDi = [vxsin(θOi)vycos(θOi)]Δθi+vOi+Δvi+kivDi (11)

    若令量测误差值Δθi,Δvi是在一定区间上服从一定分布的有界值,即

    Δθi[ΔθMi,ΔθMi];Δvi[ΔvMi,ΔvMi]ΔθMi,ΔvMi>0 (12)

    则对[vxsin(θOi)vycos(θOi)]符号进行讨论可得到:

    LI1i(ki){vxsin(θOi)vycos(θOi)0Li[vxsin(θOi)vycos(θOi)]ΔθMi+vOi+kvDiΔvMiLi[vxsin(θOi)vycos(θOi)]ΔθMi+vOi+kvDi+ΔvMi={vxsin(θOi)vycos(θOi)0[cos(θOi)+sin(θOi)ΔθMi]vx+[sin(θOi)cos(θOi)ΔθMi]vyvOi+kvDiΔvMi[cos(θOi)sin(θOi)ΔθMi]vx+[sin(θOi)+cos(θOi)ΔθMi]vyvOi+kvDiΔvMi (13)

    以及

    {\rm{LI}}_i^2({k_i}) \triangleq \left\{ \begin{gathered} {v_x}\sin ({\theta _{{\rm{O}}i}}) - {v_y}\cos ({\theta _{{\rm{O}}i}}) \le 0 \\ [\cos ({\theta _{{\rm{O}}i}}) - \sin ({\theta _{{\rm{O}}i}})\Delta {\theta _{{\rm{M}}i}}]{v_x} +[\sin ({\theta _{{\rm{O}}i}}) + \cos ({\theta _{{\rm{O}}i}})\Delta {\theta _{{\rm{M}}i}}]{v_y} \ge {v_{{\rm{O}}i}} + k{v_{{\rm{D}}i}} - \Delta {v_{{\rm{M}}i}} \\ [\cos ({\theta _{{\rm{O}}i}}) + \sin ({\theta _{{\rm{O}}i}})\Delta {\theta _{{\rm{M}}i}}]{v_x} +[\sin ({\theta _{{\rm{O}}i}}) - \cos ({\theta _{{\rm{O}}i}})\Delta {\theta _{{\rm{M}}i}}]{v_y} \le {v_{{\rm{O}}i}} + k{v_{{\rm{D}}i}} + \Delta {v_{{\rm{M}}i}} \\ \end{gathered} \right. (14)

    {{\rm{LI}}}_i^1({k_i}),\:{\rm{LI}}_i^2({k_i})分别表示第i个雷达站在速度模糊数为{k_i}时对应的两个关于({v_x},{v_y})的子线性不等式组。在网络化雷达系统中,由于多雷达站对同一目标的观测数据具有一定的耦合性,则当网络化雷达系统获取同一区域的观测来源于同一目标时,存在 {q_i},\:{k_i}\left( {i = 1,\:2,\:\cdots,\:N} \right) 使得目标的速度({v_x},{v_y})满足以下线性不等式组:

    \begin{split} & {\rm{LI}}({q_1},\:{q_2}, \: \cdots ,\:{q_N},\:{k_1},\:{k_2}, \: \cdots ,\:{k_N}) \triangleq \left\{ \begin{gathered} {\rm{LI}}_1^{{q_1}}({k_1}) \\ {\rm{LI}}_2^{{q_2}}({k_2}) \\ \quad\; \vdots \\ {\rm{LI}}_i^{{q_i}}({k_i}) \\ \quad\; \vdots \\ {\rm{LI}}_N^{{q_N}}({k_N}) \\ \end{gathered} \right. \\ & {q_i} \in \{ 1,\:2\} ,{k_i} \in \{ - K,\: - K + 1,\: \cdots ,\:K\} \\ & i = 1,\:2,\: \cdots ,\:N \\[-10pt] \end{split} (15)

    也就是说,若存在 {q_i},\:{k_i}\left( {i = 1,\:2,\:\cdots,\:N} \right) 使得不等式组LI存在可行域,则说明多雷达站所观测到速度与角度信息满足上述耦合约束条件,亦即多个雷达站的观测来源于同一目标,据此可判定目标存在;否则说明多雷达站所观测的区域无目标存在。

    至此,网络化雷达融合检测问题被转化为判断线性不等式组可行域是否为空集的问题。由于该线性不等式组与线性规划问题中的线性约束条件表示方式一致,因此本文基于单纯形算法求解线性规划问题的思路来对文中线性不等式组可行域是否为空集进行判决。单纯形算法是一类经典的解决线性规划问题的算法,其迭代的初始条件要求线性约束条件可行域非空[24,25]。具体的,本文使用运筹学中快速可靠的两阶段法,利用其第1阶段来对线性规划问题有无可行域进行判决[26-28]。因此将原问题转化为线性不等式组后,即可以利用两阶段算法的第1阶段来对不等式组是否有可行域进行求解。算法1给出完整的算法应用流程。

    算法 1 多普勒信息辅助的融合检测算法
    Alg. 1 Procedures of the proposed fusion detection method
     步骤1 利用传统融合检测算法获得初次融合检测结果,若判决
     结果为目标不存在则结束算法流程,返回该判决结果;若判决目
     标存在则进入步骤2;
     步骤2 将各雷达站观测到目标的角度{\theta _{{\rm{O}}i} }和径向多普勒速度{v_{{\rm{O}}i} }
     代入式(13)、式(14)中获得各雷达站对应的两个子线性不等式
     组,之后依次选取每雷达站对应的其一子线性不等式组以及遍历
     可能的速度模糊数构成一个新的线性不等式组
     {\rm{LI} }({q_1},\:{q_2}, \cdots ,\:{q_N},\:{k_1},\:{k_2}, \cdots ,\:{k_N})
     步骤3 对构造的线性不等式组进行遍历,依次利用两阶段算法
     对其进行有无可行解的判决,若某个线性不等式组存在可行域,
     结束算法流程,返回目标存在的判决,否则转入步骤4;
     步骤4 对基于幅度信息初次融合检测结果进行修正,返回目标
     不存在的判决,算法终止。
    下载: 导出CSV 
    | 显示表格

    根据3.1节的分析可知,多普勒信息辅助的融合检测算法在数学上的形式主要是判断线性不等式组有无可行解,若能将多雷达站系统下对应的可行域R在二维坐标图上表示出来,就可以对不同情况下所提算法的检测性能进行评估。根据式(8),式(13)与式(14)可知,单雷达站对应不等式组式(13)和式(14)中的直线位置关系如图2所示。

    图  2  单雷达站线性不等式组中直线位置关系
    Figure  2.  Position relation between lines in linear inequalities based on single radar station

    其中,L1对应角度与速度的耦合方程(8),角度量测误差的存在使其斜率发生变化得到L2,速度量测误差的存在使L2的截距发生变化得到L3。L8对应进行符号讨论的直线方程{v_x}\sin ({\theta _{{\rm{O}}i}}) - {v_y}\cos ({\theta _{{\rm{O}}i}}){\text{ = }}0,L4—L7则对应式(13)与式(14)中其余直线的方程。显然,上述直线满足: L4, L5与L3交于点P1;L6, L7 与L3交于点P2; L5, L7与L8交于点P3;L4, L6与L8交于点P4。并且L3与L8 垂直;L4, L5(L6, L7)关于L3对称;L4, L6(L5, L7)关于L8对称。

    基于上述结论可知,单雷达站对应线性不等式组的可行域{R_i}图3所示。在不存在量测误差情况下,角度与速度耦合方程(8)一定包含在{R_i}中,也即{R_i}表示在最大误差容限内所有可能为真值的集合。

    图  3  单雷达站对应可行域{R_i}
    Figure  3.  Corresponding feasible region {R_i} of single radar station

    当多雷达站对应的可行域{R_i}具有公共区域时,不等式组式(15)有解,即算法判定该目标非虚警。而本文所提算法的优势主要在于通过抑制虚警来提升检测概率,因此所提算法理论分析的重点在于其抑制虚警的能力,为对该能力进行理论分析,考虑3雷达站系统,且雷达布站位置如图4所示。假设感兴趣目标速度的最大值为{v_{{\text{max}}}} > 0,则虚警满足不等式组式(13)—式(15)的概率 {P_{\text{f}}} 为3个雷达站对应的可行域在圆O(v_x^2 + v_y^2 \le v_{\max }^2)内有公共交叠部分的概率。

    图  4  3雷达站系统
    Figure  4.  Three-radar station system

    将雷达站S1, S2对应的可行域在圆O中出现交叠记为事件A;S1, S2交叠区域与S3对应的可行域存在交叠记为事件B,则有:

    {P_{\text{f}}} = P({\text{A}},{\text{B}}) = P({\text{A}})P({\text{B|A}}) (16)

    由于算法中物理量之间的非线性耦合关系和不等式组的复杂性,为简化分析给出以下假设条件:

    C1: 假设各雷达站观测不存在速度模糊;

    C2: 假设当两雷达站对应的L3在圆O中有交点时,即视为两雷达站对应可行域有交叠;

    C3: 假设S1, S2对应观测角度之和为180°(或–180°);

    C4: 假设可以忽略角度观测误差,而只考虑速度误差,且各雷达站对应的速度误差限相同,均为\Delta {v_{{\text{max}}}}( > 0)

    上述假设条件中,C1可在高重频雷达体制下成立,C2可在角度和速度误差较小情况下近似成立,C3可在共视区域相对于雷达S1, S2距离较远时近似成立,C4可在高精度雷达测角系统中近似成立。

    首先考虑当目标不存在时,雷达站S1和S2对应的可行域R1, R2大致垂直于{v_x}轴,原点到两雷达站对应L3的距离在[0,{v_{{\text{max}}}}]区间内随机分布,两者在圆O中出现交叠的情况如图5所示,图中S1和S2对应的可行域的交叠区域为R

    图  5  S1, S2对应可行域R
    Figure  5.  Feasible region R of S1 and S2

    在假设C1—C4下,假设共视区域相对于S1的方向角度范围为[ - {\theta _{1 \max }},{\theta _{1 \max }}],则当S1观测角度为{\theta _1},观测径向速度为{v_1}时,S1对应的L3位置与存在虚警点的情况下S2对应的L3的可能位置如图6所示,图6阴影区域为存在虚警点时S2对应L3的可能位置,则该区域两边界的距离{v_{\text{c}}}表示存在虚警点时,S2观测的虚警可能径向速度的区间长度。图6中已表明各直线间的位置关系和角度关系,则S1对应的L3与圆O的割线长度为

    图  6  S1, S2对应L3位置
    Figure  6.  The position of L3 of S1 and S2
    {v_{{\text{S1}}}} = 2\sqrt {v_{{\text{max}}}^2 - v_1^2} (17)

    则有

    {v_{\text{c}}} = {v_{{\text{S1}}}}|\sin 2{\theta _1}| = 2\sqrt {v_{{\text{max}}}^2 - v_1^2} |\sin 2{\theta _1}| (18)

    则在观测值为({v_1}, {\theta _1})下S1, S2对应可行域在圆O中存在交集的概率为

    P({\text{A|}}{v_1},\:{\theta _1}) \approx \frac{{\sqrt {v_{{\text{max}}}^2 - v_1^2} }}{{{v_{\max }}}}|\sin 2{\theta _1}| (19)

    则S1, S2对应可行域在圆O中存在交集的平均概率近似为

    \begin{split} P({\text{A}}) \approx &\int_{ - {v_{{\text{max}}}}}^{{v_{{\text{max}}}}} {\int_{ - {\theta _{1{\text{max}}}}}^{{\theta _{1{\text{max}}}}} {\frac{1}{{2{v_{{\text{max}}}}}}} } \times \frac{1}{{2{\theta _{1 {\text{max}}}}}} \\ & \times P({\text{A|}}{v_1},{\theta _1}){\rm{d}}{\theta _1}{\rm{d}}{v_1} \\ = &\frac{{\pi (1 - \cos 2{\theta _{1{\text{max}}}})}}{{8{\theta _{1 {\text{max}}}}}} \end{split} (20)

    在假设C4下,角度观测误差被忽略,则单雷达站对应可行域如图7所示,其中阴影区域的边界平行,又因为假设各雷达站对应的速度误差限相同,因此各雷达站对应的可行域宽度相同且均为2\Delta {v_{{\text{max}}}},进而也不难证明S1, S2对应可行域交叠形状为菱形,大致图像如图8所示。由位置关系可知,S1, S2对应可行域交叠呈的菱形在 {v_y} 轴上的投影长度为

    图  7  单雷达站对应可行域{R_i}
    Figure  7.  Corresponding feasible region {R_i} of single radar station
    图  8  S1, S2对应可行域R
    Figure  8.  Feasible region R of S1 and S2
    {v_l} = \frac{{2\Delta {v_{\max }}}}{{|\sin {\theta _1}|}} (21)

    此时由于假设C3的存在,雷达站S3对应的可行域大致与 {v}_{y} 垂直,此时3雷达站对应可行域存在交叠情况下S3对应L3可能存在区域如图9所示,并且根据图9中标识的位置关系可推导出:

    图  9  S3对应L3可能存在区域
    Figure  9.  Possible region of L3 of S3
    \begin{split} P({\rm{B}}{\text{|}}{\rm{A}},{\theta _1}) \approx& \frac{{{v_l} + 2\Delta {v_{\max }}}}{{2{v_{\max }}}} \\ = &\frac{{\Delta {v_{\max }}(1 + |\sin {\theta _1}|)}}{{2{v_{\max }}|\sin {\theta _1}|}} \end{split} (22)

    进而S3对应可行域与S1, S2交叠成的菱形有公共区域的平均概率近似为

    \begin{split} P({\rm{B}}|{\rm{A}}) \approx &\int_{ - {\theta _{1 \max }}}^{{\theta _{1 \max }}} {\frac{1}{{2{\theta _{1 \max }}}}} \times P({\rm{B}}{\text{|}}{\rm{A}},{\theta _1}){\rm{d}}{\theta _1} \\ = &\frac{{\Delta {v_{\max }}}}{{{v_{\max }}}}\left[1 + \dfrac{{\ln \left(\tan \dfrac{{\pi + 2{\theta _{1 \max }}}}{4}\right)}}{{{\theta _{1 \max }}}}\right] \end{split} (23)

    综上,在图4所示的3雷达站系统下,且在假设C1—C4成立条件下,虚警满足式(13)—式(15)的概率为

    \begin{split} {P_{\text{f}}} =& P({\rm{A}})P({\rm{B}}|{\rm{A}}) \\ =& \frac{{\pi (1 - \cos 2{\theta _{1{\text{max}}}})\Delta {v_{\max }}}}{{8\theta _{1 \max }^2{v_{\max }}}} \\ & \times\left[{\theta _{1 \max }} + \ln \left(\tan \frac{{\pi + 2{\theta _{1 \max }}}}{4}\right)\right] \end{split} (24)

    假设基于幅度信息融合检测算法的虚警概率为{P_{{\text{fi}}}},则根据该结果可计算出所提算法最终的虚警概率:

    {P_{{\text{fa}}}} = {P_{{\text{fi}}}}{P_{\text{f}}} (25)

    可以看出,所提算法的虚警概率随着 \Delta {v_{\max }} 的增大而增大,随着 {v_{\max }} 的增大而减小,且当{\theta _{1 \max }}在某一正区间(0,{\theta _0}]({\theta _0} > 0)内时随着{\theta _{1\max }}的增大而增大。从各雷达站对应可行域的交叠情况来看,在假设C1—C4下, \Delta {v_{\max }} 的增加会增大可行域的宽度, {v_{\max }} 的减小会缩小S3对应L3的纵轴截距的分布范围,使得虚警情况下各雷达站的可行域出现交叠的概率增加,从而增大了最终的虚警概率,与式(24)理论结果一致。在假设C1—C4下,当{\theta _{1 \max }}值为0时,雷达站S1和S2对应的L3平行,两者有交点的概率为0,又由概率值的非负性可知,当{\theta _{1 \max }}在某一正区间(0,{\theta _0}]({\theta _0} > 0)时,算法虚警概率随{\theta _{1 \max }}单调递增,同样与式(24)理论结果一致。

    据3.1节对算法流程的介绍可知,算法遍历每个雷达站对应的子线性不等式组以及可能的速度模糊数建立新的线性不等式组LI,从而利用两阶段法的第1阶段判断其是否有可行域。实质上,两阶段算法的第1阶段是在原优化模型的线性约束中加入人工变量,并以人工变量的和为优化模型建立了新的优化模型,从而利用单纯形算法对其进行求解,通过判断最优值是否为0来判断原线性约束条件是否有可行域。根据文献[29],单纯形算法的平均复杂度为O({h^3}{m^{{(h - 1)}^{-1}}}),其中hm分别表示优化变量和线性约束的个数。

    对于本算法中线性不等式组LI而言,为将其化为线性规划约束条件的标准形式[24],需要将符号未知的{v_x},{v_y}化为

    \begin{split} & {v_x} = v_x^ + - v_x^ - ;{v_y} = v_y^ + - v_y^ - \\ & v_x^ + ,\;v_x^ - ,\;v_y^ + ,\;v_y^ - \ge 0 \end{split} (26)

    之后在两阶段算法中会再为线性约束条件加入m个人工变量,因此LI对应的h = 4 + m,又由式(13)—式(15)可知m = 3N,进而得到利用两阶段法判断LI是否有可行域的平均复杂度为O({(4 + 3N)^3}{(3N)^{{(3N + 3)}^{-1}}})

    考虑最坏情况,每历经一次算法都需要对{2^N}{(2K + 1)^N}个可能的LI进行有无可行域的判决,则算法的整体平均复杂度为O({(4K + 2)^N} (4 + 3N{)^3} \cdot{(3N)^{{(3N + 3)}^{-1}}})

    从3.1节所提的约束可以看出,所提算法使用的角度与径向速度观测之间有较强的非线性耦合关系,其在不同场景下带来理论的检测性能难以通过直接积分的方式解析计算,因此本节通过蒙特卡罗试验对所提方法的性能及其影响因素进行分析验证,针对某一网络化雷达系统对多普勒信息辅助的融合检测算法进行实验仿真,假设各雷达站发射波形均为线性调频信号(Linear Frequency Modulation, LFM),各雷达系统主要参数如表1所示。假设影响各雷达检测的因素均为高斯白噪声,其功率参数相同。假设网络化雷达共视区域为50 km×50 km的正方形,其形状如图10中阴影部分所示,目标随机出现在雷达共视区域中。

    表  1  仿真实验雷达系统主要参数
    Table  1.  Main parameters of the radar systems in the simulation
    参数数值
    载频{f_{\rm{c}}}2 GHz
    带宽B2 MHz
    脉冲重复频率{f_{\rm{r}}}3 kHz
    相参积累脉冲数{N_{\rm{c}}}32
    3 dB波束宽度{\theta _{3\;{\rm{dB}}} }
    下载: 导出CSV 
    | 显示表格
    图  10  网络化雷达共视区域
    Figure  10.  Radar network common view area

    另外,实验中假设雷达对角度和速度的量测误差均服从高斯分布,且均值均为0,其标准差正比于瑞利分辨率,且反比于回波信噪比[30]。对于目标,实验中假设最大飞行速度为{v_{\max }} = 300 m/s,飞行方向为任意角度。最后,没有特别提及情况下传统融合检测选用最优融合检测器 {T_{{\rm{opt}}}} 。用于估计待检测单元的参考窗长n = 8,传统融合检测算法和本文所提算法最终的虚警概率均固定为 {P_{{\rm{fa}}}} = {10^{ - 3}} ,其中所提算法虚警概率通过蒙特卡罗实验法得到。不失一般性地,假设各雷达站观测到目标的信噪比相同,此时前述式(6)与式(7)的融合检测器性能相同。

    根据第3节的分析可知,所提多普勒信息辅助的融合检测算法实质上通过保证较小的检测概率损失的同时,降低了虚警概率,等价于在最终虚警概率相同的条件下提升了目标检测性能。若设传统融合检测器的检测门限值为\gamma ,在给定融合检测器的检验统计量{T_F}\left( {\boldsymbol{Z}} \right)及其在{{{\rm{H}}}_0}{{{\rm{H}}}_1}假设下的概率密度函数时,该检测器虚警概率为{\stackrel \frown{P}_{\text{fa}}}(\gamma ),输出检测概率为{\stackrel \frown{P}_{\text{d}}}(\gamma ),且均随着\gamma 的升高而降低[2]。经过所提算法二次判断之后的虚警概率和检测概率分别为

    \begin{split} & {P}_{\text{fa}}= {\stackrel \frown{P}_{\text{fa}}}(\gamma ){r}_{\text{fa}}\\ & {P}_{\text{d}}= {\stackrel \frown {P}_{\text{d}}}(\gamma )(1-{l}_{\text{d}}) \end{split} (27)

    其中,{r_{{\text{fa}}}}表示本文算法带来的虚警排除率,{l_{\text{d}}}表示检测概率损失率。若固定系统虚警概率 {P_{{\text{fa}}}} = \alpha ,则算法最终输出检测概率为

    {P}_{\text{d}}= {\stackrel \frown{P}_{\text{d}}}\left({{\stackrel \frown{P}_{\text{fa}}^{-1}}}\left(\frac{\alpha }{{r}_{\text{fa}}}\right)\right)(1-{l}_{\text{d}}) (28)

    其中,{ {\stackrel \frown{P}_{\text{fa}}^{-1}}}表示{\stackrel \frown{P}_{\text{fa}}}的反函数。可以看出,当所提算法约束能够达到{l_{\rm{d}}} \to 0, {r_{{\rm{fa}}}} < 1的效果时,算法能够通过降低所需的检测门限提高目标检测概率,即{P}_{\text{d}} > {\stackrel \frown{P}_{\text{d}}}

    为检验算法的可靠性,现基于本文算法,在3雷达站系统下,利用多普勒信息分别辅助最优融合检测器{T_{{\rm{opt}}}}以及实际应用中较易于实现的求和规则检测器 {T_{{\text{sum}}}} 和服从求“或”准则的融合检测器进行融合检测[31],得到引入多普勒信息进行辅助检测前后,融合检测器的检测性能对比如图11所示。可以看出,引入多普勒信息辅助检测后,最优融合检测器{T_{{\rm{opt}}}}、求和规则检测器 {T_{{\text{sum}}}} 和服从求“或”准则的融合检测器的检测性能均得到了有效的增益,这也与前述分析相吻合。

    图  11  各种传统融合检测器引入多普勒信息辅助检测前后的检测性能
    Figure  11.  Detection performance of various traditional fusion detectors before and after the introduction of Doppler information

    3.2节已经给出了单雷达站对应可行域的示意图,如图3所示。对于两雷达站系统而言,无论是否存在目标,其对应的两条观测值下L3总会有一个交点,即使两直线平行,其对应的{R_1},{R_2}总会有公共交集,如图12所示。也就是说,使用所提算法在该场景下一定会判定目标存在,无法对传统融合检测结果加以修正。因此,对于仅使用两个雷达站的网络化雷达系统,所提算法无法改善传统融合检测的检测性能。

    图  12  两雷达站系统对应可行域R
    Figure  12.  Feasible region R based on dual-radar station system

    对于含有3个及以上雷达站的网络化雷达系统,由于\{ {R_i}\} _{i = 1}^N均至少包含真值,因此在目标存在的情况下\{ {R_i}\} _{i = 1}^N一定会有公共交集,也即算法会给出正确判决结果,如图13(a)所示。在目标不存在的情况下, 3个雷达站接收到的目标速度信息是在不模糊速度范围内的随机值,又由于速度量测误差通常较小,因此此时大概率会出现3雷达站对应的\{ {R_i}\} _{i = 1}^N无公共交集的情况,各个约束构成的可行域如图13(b)所示。此时算法会给出目标不存在的正确判决。据此可以判断,当网络化雷达系统包含3个及以上分布式布置的雷达站时,所提算法能够通过修正仅基于幅度信息的传统融合检测算法的结果来提高检测性能。

    图  13  3雷达站系统对应可行域R
    Figure  13.  Feasible region R based on three-radar station system

    为验证上述结论,基于表1雷达系统参数,下面对包含2, 3以及4部雷达站系统的网络化雷达系统场景进行仿真实验,雷达布站位置如图14所示,不同网络化雷达系统下检测性能曲线如图15所示。可以看出,图15所示的实验结果与前述分析基本一致:除两部雷达站的网络化雷达系统外,3雷达站系统与4雷达站系统的检测性能均在引入多普勒信息后得到了明显增益。对于低信噪比目标,检测性能提升更加明显。这说明了多普勒信息带来的信息增量能够提高雷达系统的检测性能。需要注意的是,图7在4雷达站系统上应用算法后,检测概率几乎为1,这是由于共视区相对于各雷达站位置较为理想,且实验中为便于比较而设置了较高的虚警概率。这使得在蒙特卡罗次数较少的条件下,几乎在所有的实验中目标均能够利用多雷达站的冗余信息得以正确检测,因此会出现检测概率接近1的情况。

    图  14  雷达布站位置
    Figure  14.  Location of radar stations
    图  15  不同雷达站个数下算法的检测性能曲线
    Figure  15.  Detection performance of different algorithms applied for scenes with different number of radar stations

    通过以上实验结果及分析不难发现,在目标不存在时,随着雷达站数的增多(N \ge 3),多雷达站对应的\{ {R_i}\} _{i = 1}^N具有公共交集的概率会逐渐变小,出现虚警的概率也会降低,使得同样虚警概率条件下检测性能会逐渐提高。

    在实际应用中,雷达站的布站位置往往是影响网络化雷达系统探测性能的关键因素。为较好地分析该因素对所提算法性能的影响,不失一般性地,下面在3雷达站的网络化雷达系统中分析所提算法的性能。此外,为分析方便,不妨将3部雷达站放置在半径为150 km的圆上,且将之连线得到的图形设定为关于y轴对称的等腰三角形。为方便评估不同布站位置条件下的融合检测性能,不失一般性地,分别将顶角设置为30^\circ ,60^\circ ,90^\circ ,120^\circ ,如图16所示。

    图  16  3个雷达站顶角不同时对应的各雷达站位置
    Figure  16.  Locations of 3 radar stations with different top angles

    在目标不存在的情况下,通过将雷达站相对于共视区域的位置代入式(8)进行分析,可以得到雷达S3对应的{R_3}大致平行于x轴,与y轴交点集是大致分布在不模糊速度区间内的随机值。当雷达站组成的等腰三角形的顶角较大或较小时,雷达S1与S2对应的{R_1},{R_2}也均大致平行于x轴,与y轴交点集是大致分布在不模糊速度区间内的随机值,如图17(a)所示,此时3雷达站对应\{ {R_i}\} _{i = 1}^3的相近性使得其具有公共区域的可能性较高,虚警满足线性不等式组式(13)或式(14)约束条件的概率会比较大,因此检测性能较差;当雷达站组成等腰三角形的顶角接近90^\circ 时,雷达S1与S2对应的{R_1},{R_2}均大致平行于y轴,与x轴交点集是分布在不模糊速度区间内的随机值,如图17(b)所示,此时3雷达站对应的\{ {R_i}\} _{i = 1}^3具有公共区域的可能性较低,虚警满足线性不等式组式(13)或式(14)约束条件的概率较小,检测性能较好。

    图  17  不同雷达布站位置下\{ {R_i}\} _{i = 1}^3的分布图
    Figure  17.  Distribution of \{ {R_i}\} _{i = 1}^3 based on radar systems with different locations of radars

    为验证上述分析结果,保持表1中雷达基本参数不变,在图16所示的雷达系统上应用所提算法,得到不同布站位置下检测性能曲线如图18所示。可以看出,实验结果与前述分析基本一致,随着雷达布站连线所呈等腰三角形的顶角由小变大(30°~120°),网络化雷达系统的检测性能经历了由劣变好再衰退的过程,并且在顶角为90^\circ 时达到最佳。

    图  18  不同雷达布站位置下检测性能曲线
    Figure  18.  Detection performance of algorithm applied in radar systems with different distributions of radars

    基于以上对3雷达站系统下布站位置对检测性能的讨论,不难推论,当两雷达站关于共视区域中心点对称,且关于共视区域中心点对称的雷达对在分布圆上等间隔分布时 (若雷达站数为奇数,则无法组成雷达对的雷达站随机分布在相邻两雷达站的中心),目标不存在时相对应的\{ {R_i}\} _{i = 1}^N出现交叠区域的可能性比较小,此时网络化雷达系统的检测性能可以达到最佳。

    根据前述分析可知,除雷达站布站位置外,目标相对于雷达站所处的位置也即感兴趣的检测点位置也是影响融合检测性能的重要因素。假设选用3雷达站连线构成的等腰三角形顶角为90^\circ 的雷达布站系统,目标按如图19分布。在目标不存在的情况下,通过将图19中雷达站相对于共视区域的位置代入式(8)进行分析,可以得到检测点在处于不同位置下各雷达站对应\{ {R_i}\} _{i = 1}^3的分布如图20所示。

    图  19  目标位置
    Figure  19.  Location of targets
    图  20  不同目标位置下\{ {R_i}\} _{i = 1}^3的分布图
    Figure  20.  Distribution of \{ {R_i}\} _{i = 1}^3 based on radar systems with different locations of the target

    基于之前对3雷达站对应\{ {R_i}\} _{i = 1}^3分布的研究讨论可以看出,由于目标分布在y轴上,雷达站S3对应的L3斜率基本保持在0值附近。由于雷达站S1, S2分布在x轴上且关于y轴对称,二者对应的{R_1}, {R_2}大致与y轴平行。由于当目标不存在时,雷达站的观测速度是不模糊速度区间内的随机值,加之随着检测点位置从共视区域的上下边界逐渐转移到共视区域中心,{R_1},{R_2}越来越趋于y轴平行,\{ {R_i}\} _{i = 1}^3具有公共交集的可能性会逐渐变小,虚警满足线性不等式组式(13)或式(14)约束条件的概率也会变小,相应地,在同等虚警概率的条件下检测性能也会提高。当检测点位置由共视区域下边界的两侧逐渐向下边界中心移动时,{R_1},{R_2}会逐渐趋于关于某条平行于y轴的直线对称。又因为当目标不存在时,雷达站的观测速度是不模糊速度区间内的随机值,此过程中{R_1},{R_2}的交叠区域会慢慢在不模糊速度区域之外,此时\{ {R_i}\} _{i = 1}^3具有公共交集的可能性会变小,虚警满足线性不等式组式(13)或式(14)约束条件的概率逐渐降低,检测性能也会随之提高。

    为验证该分析,保持表1雷达基本参数不变,在图19所示的雷达系统上应用所提的算法,得到不同目标位置下检测性能曲线,如图21所示。当目标位置处于y轴上且从共视区域的上边界逐渐转移到下边界时,以及目标从共视区域下边界的左边界转移到右边界时,网络化雷达系统的检测性能经历了由劣变好再衰退的过程,并且当目标接近共视区域的中心时检测性能会更好。根据以上分析及实验结果不难推论,在4.2节讨论得出的最佳布站位置的基础上,当目标处于各雷达站连线所构成图形的中心时检测性能可达到最佳。

    图  21  不同目标位置下检测性能曲线
    Figure  21.  Detection performance of algorithm applied in radar systems with different locations of targets

    针对传统融合检测算法未充分利用多雷达站回波信息的问题,本文提出了多普勒信息辅助的融合检测算法。该算法基于多雷达站观测到同一目标的角度与速度信息的物理约束设计了角度与速度信息耦合的不等式组,并采用两阶段法对该不等式组是否有解做出判断,从而进行融合判决。所提的方法在传统仅基于幅度信息融合检测的基础上,引入多普勒信息辅助检测,利用多雷达站冗余的观测信息进一步区分目标和虚警。从而在保持最终虚警概率恒定的前提下有效降低了幅度融合所需的检测门限,提高检测性能。

    此外,本文通过对设计的角度与速度信息耦合不等式组对应的可行域进行可视化,分析了所提算法在雷达数量不同、雷达布站位置不同以及目标位置不同等场景下的检测性能,通过仿真实验验证了该分析。该可视化结果能够直观地给出所提算法在不同应用场景下的检测性能。但是,由于所提算法使用的角度与径向速度观测之间有较强的非线性耦合关系,本文只给出了特定假设条件下的理论检测性能分析结果,更具普遍意义的理论分析还需要借助更复杂的数学工具才能实现,这也是下一步的研究方向。

  • 图  1  目标威胁评估过程

    Figure  1.  Target threat assessment process

    图  2  路径规划的基本原理图

    Figure  2.  Basic schematic diagram of path planning

    图  3  目标状态图示

    Figure  3.  Target status diagram

    图  4  目标威胁度评估

    Figure  4.  Target threat assessment

    图  5  目标实际轨迹与UAV原始轨迹

    Figure  5.  Actual target trajectory and UAV original trajectory

    图  6  穿越敌占区的UAV轨迹

    Figure  6.  UAV track crossing enemy occupied area

    图  7  完全自保的UAV轨迹

    Figure  7.  Fully self insured UAV trajectory

    图  8  MC实验中穿越敌占区的UAV轨迹分布

    Figure  8.  Trajectory distribution of UAV crossing enemy occupied area in MC experiment

    图  9  MC实验中完全自保的UAV轨迹分布

    Figure  9.  Trajectory distribution of fully self protected UAV in MC experiment

    图  10  目标威胁度评估统计均值

    Figure  10.  Statistical mean value of target threat assessment

    图  11  多扩展目标跟踪效果图

    Figure  11.  Multi-extended target tracking rendering

    图  12  目标质心位置GOSPA距离统计

    Figure  12.  GOSPA distance statistics of target centroid position

    图  13  目标形状(椭圆长短轴)估计GOSPA距离统计

    Figure  13.  Target shape (major and minor axes of ellipse) estimation GOSPA distance statistics

    图  14  多目标势估计

    Figure  14.  Multi-objective cardinality estimation

    表  1  分类风险函数

    Table  1.   Classification risk function

    分类行为 A({\text{P}}) \neg A({\text{N}})
    {a_{\text{P}}} {\lambda _{{\text{PP}}}} {\lambda _{{\text{PN}}}}
    {a_{\text{B}}} {\lambda _{{\text{BP}}}} {\lambda _{{\text{BN}}}}
    {a_{\text{N}}} {\lambda _{{\text{NP}}}} {\lambda _{{\text{NN}}}}
    下载: 导出CSV

    表  2  GIW-MBer预测过程

    Table  2.   GIW-MBer prediction process

     输入:{\boldsymbol{\zeta}} _{k - 1}^{\left( {i,j} \right)}
     预测第j个GIW分量的参数:
        {\boldsymbol{m}}_{k|k - 1}^{\left( {i,j} \right)} = {\boldsymbol{F}}_{k|k - 1}^i{\boldsymbol{m}}_{k - 1}^{\left( {i,j} \right)}
        {\boldsymbol{P}}_{k|k - 1}^{\left( {i,j} \right)} = {\boldsymbol{F}}_{k|k - 1}^i{\boldsymbol{P}}_{k - 1}^{\left( {i,j} \right)}{\left( {{\boldsymbol{F}}_{k|k - 1}^i} \right)^{\rm T} } + {{\boldsymbol{Q}}_k}
        v_{k|k - 1}^{\left( {i,j} \right)} = {{\rm{e}}^{ - \frac{ { {T_s} } }{\tau } } }v_{k - 1}^{\left( {i,j} \right)},其中 \tau 为时间衰减常数
        {\boldsymbol{V} }_{k|k - 1}^{\left( {i,j} \right)} = \dfrac{ {v_{k|k - 1}^{\left( {i,j} \right)} - d - 1} }{ {v_{k - 1}^{\left( {i,j} \right)} - d - 1} }{\boldsymbol{V}}_{k - 1}^{\left( {i,j} \right)}
        {\boldsymbol{X}}_{k|k - 1}^{\left( {i,j} \right)} = \dfrac{ {{\boldsymbol{V}}_{k|k - 1}^{\left( {i,j} \right)} } }{ {v_{k|k - 1}^{\left( {i,j} \right)} - 2d - 2} }
     输出:{\boldsymbol{\zeta}} _{k|k - 1}^{\left( {i,j} \right)}
    下载: 导出CSV

    表  3  GIW-MBer更新过程

    Table  3.   GIW-MBer update process

     输入:{\boldsymbol{\zeta}} _{k|k - 1}^{\left( {i,j} \right)},量测集划分W
     更新第j个GIW分量的参数:
        \bar {\boldsymbol{z} }_k^{\boldsymbol{W} } = \dfrac{1}{ {\left| {\boldsymbol{W} } \right|} }\displaystyle\sum\limits_{{\boldsymbol{z}}_k^{\left( i \right)} \in {\boldsymbol{W}}} { {\boldsymbol{z} }_k^{\left( i \right)} }
        {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} = \dfrac{ { {\boldsymbol{V} }_{k|k - 1}^{\left( {i,j} \right)} } }{ {v_{k|k - 1}^{\left( {i,j} \right)} - 2d - 2} }
        {\boldsymbol{S} }_{k|k - 1}^{\left( {i,j,W} \right)} = { {\boldsymbol{H} }_k}{\boldsymbol{P} }_{k|k - 1}^{\left( {i,j} \right)}{\boldsymbol{H} }_k^{\text{T} } + \dfrac{ { {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} } }{ {\left| {\boldsymbol{W} } \right|} }
        {\boldsymbol{K}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} = {\boldsymbol{P}}_{k|k - 1}^{\left( {i,j} \right)}{\boldsymbol{H}}_k^{\text{T} }{\left( {{\boldsymbol{S}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} } \right)^{ - 1} }
        {\boldsymbol{\varepsilon} } _{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} = \bar {\boldsymbol{z} }_k^{\boldsymbol{W} } - { {\boldsymbol{H} }_k}{\boldsymbol{m} }_{k|k - 1}^{\left( {i,j} \right)}
        {\boldsymbol{m}}_k^{\left( {i,j} \right)} = {\boldsymbol{m}}_{k|k - 1}^{\left( {i,j} \right)} + {\boldsymbol{K}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)}{\boldsymbol{\varepsilon}} _{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)}
        {\boldsymbol{P} }_k^{\left( {i,j} \right)} = {\boldsymbol{P} }_{k|k - 1}^{\left( {i,j} \right)} - {\boldsymbol{K} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)}{\boldsymbol{S}}_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)}{\left( { {\boldsymbol{K} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} } \right)^{\text{T} } }
        {\boldsymbol{Z} }_k^{\boldsymbol{W}} = \displaystyle\sum\limits_{ {\boldsymbol{z} }_k^{\left( i \right)} \in {\boldsymbol{W} } } {\left( { {\boldsymbol{z} }_k^{\left( i \right)} - \bar {\boldsymbol{z} }_k^{\boldsymbol{W}}} \right){ {\left( { {\boldsymbol{z} }_k^{\left( i \right)} - \bar {\boldsymbol{z} }_k^{\boldsymbol{W}}} \right)}^{\text{T} } } }
        \begin{aligned} {\boldsymbol{N} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} =& {\left( { {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} } \right)^{\frac{1}{2} } }{\left( { {\boldsymbol{S} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} } \right)^{ - \frac{1}{2} } }{\boldsymbol{\varepsilon} } _{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} \\ & \times {\left( { {\boldsymbol{\varepsilon} } _{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} } \right)^{\text{T} } }{\left( { {\boldsymbol{S} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} } \right)^{ - \frac{ {\text{T} } }{2} } }{\left( { {\boldsymbol{X} }_{k|k - 1}^{\left( {i,j} \right)} } \right)^{\frac{ {\text{T} } }{2} } } \end{aligned}
        v_k^{\left( {i,j,{\boldsymbol{W}}} \right)} = v_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} + \left| {\boldsymbol{W} } \right|
        {\boldsymbol{V} }_k^{\left( {i,j,{\boldsymbol{W} } } \right)} = {\boldsymbol{V} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W} } } \right)} + {\boldsymbol{N} }_{k|k - 1}^{\left( {i,j,{\boldsymbol{W}}} \right)} + {\boldsymbol{Z} }_k^{\boldsymbol{W} }
        {\boldsymbol{X} }_k^{\left( {i,j,{\boldsymbol{W} } } \right)} = \dfrac{ { {\boldsymbol{V} }_k^{\left( {i,j,{\boldsymbol{W} } } \right)} } }{ {v_k^{\left( {i,j,{\boldsymbol{W} } } \right)} - 2d - 2} }
     输出:{\boldsymbol{\zeta}} _k^{\left( {i,j} \right)}
    下载: 导出CSV

    表  4  基于威胁规避的UAV路径规划算法

    Table  4.   UAV path planning algorithm for threat avoidance

     输入: k - 1 时刻多扩展目标多特征信息{{\boldsymbol{\zeta}} _{k - 1} }与UAV坐标
       {{\boldsymbol{x}}_{s,k - 1} },其中{{\boldsymbol{\zeta}} _{k - 1} } = \left\{ { { {\boldsymbol{m} }_{k - 1} },{ {\boldsymbol{P} }_{k - 1} },{v_{k - 1} },{ {\boldsymbol{V} }_{k - 1} } } \right\}
     步骤1 多扩展目标跟踪的预测过程,得到 {f_{k|k - 1}}\left( { \cdot | \cdot } \right)
     步骤2 路径规划:
        {\hat {\boldsymbol{\xi}} _{k|k - 1} } = {\text{Sfun} }\left\{ { {f_{k|k - 1} }\left( { \cdot | \cdot } \right)} \right\}
        确定所有可能的路径规划方案{{\boldsymbol{C}}_k}
        {\text{for all } }c \in {{\boldsymbol{C}}_k}{\text{ do} }
          生成PIMS:{{\boldsymbol{Z}}_k}\left( u \right)
          量测集划分:{\boldsymbol{\rho}} \angle {{\boldsymbol{Z}}_k}\left( u \right)
          计算伪更新后验密度 {f_{k,c}}\left( { \cdot | \cdot } \right)
          提取状态的统计平均:{\hat {\boldsymbol{\xi}} _{k,c} } \leftarrow {\text{Sfun} }\left\{ { {f_{k,c} }\left( { \cdot | \cdot } \right)} \right\}
          计算\mathcal{D}\left( { {{\boldsymbol{\xi}} _{k,c} },{ {\bar {\boldsymbol{\xi}} }_{k,c} } } \right) \mathcal{V}\left( c \right)
         {\text{end for}}
        求解控制方案:{\hat c_k} = \mathop {\arg \min }\limits_{c \in {{\boldsymbol{C}}_k} } \{ {w_\mathcal{V} }\mathcal{V}\left( c \right)
        + {w_\mathcal{D} }\mathcal{D}({{\boldsymbol{\xi}} _{k,c} },{\bar {\boldsymbol{\xi}} _{k,c} })\}
     步骤3 多扩展目标跟踪的更新过程,得到 {f_{k|k}}\left( { \cdot | \cdot } \right)
     步骤4 提取多扩展目标状态信息{{\boldsymbol{\xi}} _k},计算目标势{N_k} = \left| { {{\boldsymbol{\xi}} _k} } \right|
     输出:k时刻UAV坐标{{\boldsymbol{x}}_{s,k} },目标势 {N_k} ,多扩展目标状态集{{\boldsymbol{\xi}} _k}
    下载: 导出CSV

    表  5  硬件配置

    Table  5.   Hardware configuration

    参数数值
    CPU主频3.1 GHz
    最高睿频5.2 GHz
    内存类型DDR4 3200 MHz
    最大内存带宽76.8 GB/s
    下载: 导出CSV

    表  6  目标状态

    Table  6.   Target status

    目标编号位置(m; m)速度(m/s; m/s)运动方向(°)
    1[100; 100][–10; –10]0
    2[200; 200][–10; –10]0
    3[100; 100][–5; –5]0
    4[–100; 100][10; –10]0
    5[100; 100][5; 5]180
    6[100; 100][–10; 10]90
    下载: 导出CSV

    表  7  各运动体的初始状态

    Table  7.   Initial state of each moving object

    目标出生时刻
    (s)
    消亡时刻
    (s)
    初始状态
    (m; m; m/s; m/s)
    目标1140[–300; 100; 30; –10]
    目标21140[100; 200; –15; –30]
    目标31635[50; –600; –20; 30]
    目标42135[–600; –200; 10; 35]
    目标52630[200; 500; –50; 20]
    目标62630[–600; 600; 40; –30]
    UAV//[600; –800; –30; 40]
    下载: 导出CSV
  • [1] AGGARWAL S and KUMAR N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges[J]. Computer Communications, 2020, 149: 270–299. doi: 10.1016/j.comcom.2019.10.014
    [2] BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171–1187. doi: 10.1109/OJCOMS.2021.3081996
    [3] BOLOURIAN N and HAMMAD A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection[J]. Automation in Construction, 2020, 117: 103250. doi: 10.1016/j.autcon.2020.103250
    [4] BASIRI A, MARIANI V, SILANO G, et al. A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture[J]. Journal of Navigation, 2022, 75(2): 364–383. doi: 10.1017/S0373463321000825
    [5] KARUR K, SHARMA N, DHARMATTI C, et al. A survey of path planning algorithms for mobile robots[J]. Vehicles, 2021, 3(3): 448–468. doi: 10.3390/vehicles3030027
    [6] REN Tianzhu, ZHOU Rui, XIA Jie, et al. Three-dimensional path planning of UAV based on an improved A algorithm[C]. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 2016: 140–145.
    [7] SARANYA C, UNNIKRISHNAN M, ALI S A, et al. Terrain based D* algorithm for path planning[J]. IFAC-PapersOnLine, 2016, 49(1): 178–182. doi: 10.1016/j.ifacol.2016.03.049
    [8] MAUROVIĆ I, SEDER M, LENAC K, et al. Path planning for active SLAM based on the D* algorithm with negative edge weights[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48(8): 1321–1331. doi: 10.1109/TSMC.2017.2668603
    [9] RUZ J J, AREVALO O, DE LA CRUZ J M, et al. Using MILP for UAVs trajectory optimization under radar detection risk[C]. 2006 IEEE Conference on Emerging Technologies and Factory Automation, Prague, Czech Republic, 2006: 957–960.
    [10] PEHLIVANOGLU Y V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV[J]. Aerospace Science and Technology, 2012, 16(1): 47–55. doi: 10.1016/j.ast.2011.02.006
    [11] PHUNG M D and HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J]. Applied Soft Computing, 2021, 107: 107376. doi: 10.1016/j.asoc.2021.107376
    [12] KONATOWSKI S. Application of the ACO algorithm for UAV path planning[J]. Przeglad Elektrotechniczny, 2019, 1(7): 117–121. doi: 10.15199/48.2019.07.24
    [13] 周彬, 郭艳, 李宁, 等. 基于导向强化Q学习的无人机路径规划[J]. 航空学报, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109

    ZHOU Bin, GUO Yan, LI Ning, et al. Path planning of UAV using guided enhancement Q-learning algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 325109. doi: 10.7527/S1000-6893.2021.25109
    [14] XU Liang and NIU Ruixin. Tracking visual object as an extended target[C]. 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, USA, 2021: 664–668.
    [15] 陈辉, 杜金瑞, 韩崇昭. 基于星凸形随机超曲面模型多扩展目标多伯努利滤波器[J]. 自动化学报, 2020, 46(5): 909–922. doi: 10.16383/j.aas.c180130

    CHEN Hui, DU Jinrui, and HAN Chongzhao. A multiple extended target multi-bernouli filter based on star-convex random hypersurface model[J]. Acta Automatica Sinica, 2020, 46(5): 909–922. doi: 10.16383/j.aas.c180130
    [16] KHALKHALI M B, VAHEDIAN A, and YAZDI H S. Multi-target state estimation using interactive Kalman filter for multi-vehicle tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1131–1144. doi: 10.1109/TITS.2019.2902664
    [17] KIM D Y, VO B N, VO B T, et al. A labeled random finite set online multi-object tracker for video data[J]. Pattern Recognition, 2019, 90: 377–389. doi: 10.1016/j.patcog.2019.02.004
    [18] MAHLER R P S. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Boston, USA: Artech House, 2014: 825–860.
    [19] MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston, USA: Artech House, 2007: 655–667.
    [20] 杨威, 付耀文, 龙建乾, 等. 基于有限集统计学理论的目标跟踪技术研究综述[J]. 电子学报, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025

    YANG Wei, FU Yaowen, LONG Jianqian, et al. The FISST-based target tracking techniques: A survey[J]. Acta Electronica Sinica, 2012, 40(7): 1440–1448. doi: 10.3969/j.issn.0372-2112.2012.07.025
    [21] MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    [22] VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884
    [23] VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [24] VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [25] VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822
    [26] VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014
    [27] REUTER S, VO B T, VO B N, et al. The labeled multi-Bernoulli filter[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3246–3260. doi: 10.1109/TSP.2014.2323064
    [28] BAUM M and HANEBECK U D. Random hypersurface models for extended object tracking[C]. 2009 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Ajman, United Arab Emirates, 2009: 178–183.
    [29] THORMANN K, BAUM M, and HONER J. Extended target tracking using Gaussian processes with high-resolution automotive radar[C]. 2018 21st International Conference on Information Fusion (FUSION), Cambridge, United Kingdom, 2018: 1764–1770.
    [30] KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362
    [31] FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/TSP.2010.2101064
    [32] 张银燕, 李弼程. 基于MIN-MAX云重心推理的目标威胁评估方法[J]. 系统仿真学报, 2014, 26(2): 411–418. doi: 10.16182/j.cnki.joss.2014.02.041

    ZHANG Yinyan and LI Bicheng. Method of target threat assessment based on cloudy MIN-MAX center of gravity reasoning[J]. Journal of System Simulation, 2014, 26(2): 411–418. doi: 10.16182/j.cnki.joss.2014.02.041
    [33] 李特, 冯琦, 张堃. 基于熵权灰色关联和D-S证据理论的威胁评估[J]. 计算机应用研究, 2013, 30(2): 380–382. doi: 10.3969/j.issn.1001-3695.2013.02.016

    LI Te, FENG Qi, and ZHANG Kun. Threat assessment based on entropy weight grey incidence and D-S theory of evidence[J]. Application Research of Computers, 2013, 30(2): 380–382. doi: 10.3969/j.issn.1001-3695.2013.02.016
    [34] 高晓光, 李青原, 邸若海. 基于DBN威胁评估的MPC无人机三维动态路径规划[J]. 系统工程与电子技术, 2014, 36(11): 2199–2205. doi: 10.3969/j.issn.1001-506X.2014.11.14

    GAO Xiaoguang, LI Qingyuan, and DI Ruohai. MPC three-dimensional dynamic path planning for UAV based on DBN threat assessment[J]. Systems Engineering and Electronics, 2014, 36(11): 2199–2205. doi: 10.3969/j.issn.1001-506X.2014.11.14
    [35] 张堃, 王雪, 张才坤, 等. 基于IFE动态直觉模糊法的空战目标威胁评估[J]. 系统工程与电子技术, 2014, 36(4): 697–701. doi: 10.3969/j.issn.1001-506X.2014.04.15

    ZHANG Kun, WANG Xue, ZHANG Caikun, et al. Evaluating and sequencing of air target threat based on IFE and dynamic intuitionistic fuzzy sets[J]. Systems Engineering and Electronics, 2014, 36(4): 697–701. doi: 10.3969/j.issn.1001-506X.2014.04.15
    [36] GAO Yang, LI Dongsheng, and ZHONG Hua. A novel target threat assessment method based on three-way decisions under intuitionistic fuzzy multi-attribute decision making environment[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103276. doi: 10.1016/j.engappai.2019.103276
    [37] WANG Yi, LIU Sanyang, NIU Wei, et al. Threat assessment method based on intuitionistic fuzzy similarity measurement reasoning with orientation[J]. China Communications, 2014, 11(6): 119–128. doi: 10.1109/CC.2014.6879010
    [38] 王小艺, 刘载文, 侯朝桢, 等. 基于模糊多属性决策的目标威胁估计方法[J]. 控制与决策, 2007, 22(8): 859–863. doi: 10.3321/j.issn:1001-0920.2007.08.004

    WANG Xiaoyi, LIU Zaiwen, HOU Chaozhen, et al. Method of object threat assessment based on fuzzy MADM[J]. Control and Decision, 2007, 22(8): 859–863. doi: 10.3321/j.issn:1001-0920.2007.08.004
    [39] GRANSTRÖM K, FATEMI M, and SVENSSON L. Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli filter for extended target tracking[C]. 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 2016: 893–900.
    [40] 连峰, 马冬冬, 元向辉, 等. 扩展目标CBMeMBer滤波器及其高斯混合实现[J]. 控制与决策, 2015, 30(4): 611–616. doi: 10.13195/j.kzyjc.2014.0286

    LIAN Feng, MA Dongdong, YUAN Xianghui, et al. CBMeMBer filter for extended targets and its Gaussian mixture implementations[J]. Control and Decision, 2015, 30(4): 611–616. doi: 10.13195/j.kzyjc.2014.0286
    [41] GOSTAR A K, HOSEINNEZHAD R, BAB-HADIASHAR A, et al. Sensor-management for multitarget filters via minimization of posterior dispersion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2877–2884. doi: 10.1109/TAES.2017.2718280
    [42] RAHMATHULLAH A S, GARCÍA-FERNÁNDEZ Á F, and SVENSSON L. Generalized optimal sub-pattern assignment metric[C]. 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–8.
    [43] LUNDQUIST C, GRANSTRÖM K, and ORGUNER U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472–483. doi: 10.1109/JSTSP.2013.2245632
  • 期刊类型引用(2)

    1. 齐铖,谢军伟,费太勇,张浩为,杨潇. 基于信道互易的PA-MIMO雷达目标检测性能研究. 北京航空航天大学学报. 2025(01): 214-221 . 百度学术
    2. 齐铖,谢军伟,张浩为,王瑞君,黄洁瑜. 基于防空目标探测与跟踪的雷达资源管理技术研究综述. 信号处理. 2024(11): 1972-1989 . 百度学术

    其他类型引用(1)

  • 加载中
图(14) / 表(7)
计量
  • 文章访问数: 1210
  • HTML全文浏览量: 416
  • PDF下载量: 259
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-08-11
  • 刊出日期:  2023-06-28

目录

/

返回文章
返回