-
摘要: 针对辐射源个体识别(SEI)中样本标签不完整和数据类别分布不平衡导致分类准确率下降的问题,该文提出了一种基于代价敏感学习和半监督生成式对抗网络(GAN)的特定辐射源分类方法。该方法通过半监督训练方式优化生成器和判别器的网络参数,并向残差网络中添加多尺度拓扑模块融合时域信号的多维分辨率特征,赋予生成样本额外标签从而直接利用判别器完成分类。同时设计代价敏感损失缓解优势样本导致的梯度传播失衡,改善分类器在类不平衡数据集上的识别性能。在4类失衡仿真数据集上的实验结果表明,存在40%无标记样本的情况下,该方法对于5个辐射源的平均识别率相比于交叉熵损失和焦点损失分别提高5.34%和2.69%,为解决数据标注缺失和类别分布不均条件下的特定辐射源识别问题提供了新思路。Abstract: This paper proposes an SEI method based on cost-sensitive learning and semisupervised generative adversarial networks to address the problem of incomplete sample labels and imbalanced data category distribution in Specific Emitter Identification (SEI), which leads to a decline in inaccuracy. Through semisupervised training, the method optimizes the network parameters of the generator and discriminator, adds a multiscale topological block to ResNet to fuse the multi-dimensional resolution features of the time-domain signal, and attributes additional labels to the generated samples to directly use the discriminator to complete the classification. Simultaneously, a cost-sensitive loss is designed to alleviate the imbalance of gradient propagation caused by the dominant samples and improve the recognition performance of the classifier on the class-imbalanced dataset. The experimental results on four types of imbalanced datasets show that in the presence of 40% unlabeled samples, the average recognition accuracy for five emitters is improved by 5.34% and 2.69%, respectively, compared with the cross-entropy loss and focus loss. This provides a new idea for solving the problem of SEI under the conditions of insufficient data labels and an unbalanced distribution of data.
-
1. 引言
近年来关于太赫兹的研究日趋增加,相对于微波频段雷达,太赫兹雷达以其更高的空间分辨率和角分辨率具有更大的优势受到了越来越多的重视[1,2]。太赫兹辐射的光子能量低,对穿透物不会造成损伤,并且可以穿过大多数介电物质,实现无损检测。太赫兹波具有穿透性,能够实现对隐蔽物体的有效检测,可应用于安检相关的领域。太赫兹频段相比于微波频段频率更高,更容易发射大带宽信号,具有更高的分辨率,具有海量的频谱资源,可用于超宽带超高速无线通信。太赫兹波段目标表面的细微结构、粗糙度等细节会显著影响其后向散射特性,实现更小尺寸目标的探测、更精确目标的运动与物理参数反演[3]。太赫兹(terahertz, THz)波段位于微波与红外波之间,其频率范围为0.1~10 THz (1 THz=1012 Hz),对应的波长为30 μm~3 mm。太赫兹频段目标散射特性是太赫兹雷达探测和成像应用的物理基础[4,5],同时也是太赫兹雷达系统进行链路设计、特征提取以及成像算法的重要依据。国内首都师范大学太赫兹实验室研制了太赫兹数字全息成像系统,对太赫兹电磁波的振幅、相位、频率及偏振等全部光学信息的3维空间分布进行精确测量[6]。针对太赫兹波段目标的散射特性,美国麻省LOWELL大学毫米波实验室利用1.56 THz源在紧缩场中对粗糙表面圆柱体的目标散射特性进行了研究[4]。天津大学太赫兹研究中心搭建了以0.2 THz返波管振荡器源、热释电探测器、小型自动旋转光学平台等组成的太赫兹波目标散射特性实验测试系统,并对粗糙铜面的散射特性等进行了研究[7,8]。对于介质[9]和涂覆目标的太赫兹散射,北京航空航天大学江月松等人考虑粗糙度修正表面的散射系数研究了基于经验公式的涂覆目标的太赫兹散射特性[10]。
本文区别于以往采用经验公式[10]以粗糙度修正散射系数的研究方法,把随机粗糙面的建模理念应用到太赫兹波段表面粗糙目标的建模中。首先模拟生成了分形粗糙面近似代替实际复杂的粗糙面,对生成的分形粗糙面进行坐标变换导入计算机辅助设计(Computer Aided Design, CAD)建模软件建立具有粗糙表面的目标模型;然后对表面粗糙目标按照入射波的频率以满足物理光学近似的要求进行剖分。根据菲涅尔反射系数求得表面电流进而计算涂覆粗糙目标的雷达散射截面(Radar Cross Section, RCS)。并针对不同频率以及不同涂覆厚度的表面粗糙涂覆目标,分别进行了仿真分析。
2. 表面粗糙目标模型
2.1 分形粗糙面
自1982年Mandelbrot首次提出“分形”的概念[11],指的是组成部分与整体以某种方式相形似,分形理论就在很多领域中得到应用。“分形”不同于通常意义上的长度、面积、体积等几何概念,分形内部的任何一个相对独立的部分,在一定程度上都应该是整体的再现和缩影,分形几何体内部存在无穷层次、具有见微知著、由点及面的自相似结构,即具有自相似性。由于粗糙面一般具有非线性的几何结构,因此采用非线性的方法模拟粗糙面更能反映其物理本质。自然界的许多物体,如地、海表面、植被和森林等都在一定尺度范围内存在统计意义上的自相似性,由此很多学者将分形理论应用于电磁散射领域中,用于粗糙面的模拟[12,13]。
1维带限Weierstrass-Mandelbrot分形函数的表达式为:
f(x)=√2δ[1−b(2D−4)]1/2[b(2D−4)N1−b(2D−4)(N2+1)]1/2⋅N2∑n=N1b(D−2)ncos(2πsbnx+φn) (1) 其中,
δ 为高度的均方根,b是空间基频,D为分形维数(1<D<2),s为标度因子(s=K0/2π , K0为空间波数),φn 为(0,2π) 上均匀分布的随机相位,该函数具有零均值。一般取b>1,b为有理数时,f(x)表现为周期函数;b为无理数时,f(x)为准周期函数。标度因子s决定频谱的位置,f(x)的无标度区间一般取(sbN1)−1 和(sbN2)−1 ,N=N2−N1+1 ,随着N的增加,越来越多的频率分量加到准周期。图1给出了1维分形粗糙面模型,当分维数D增加时,高频分量比重加大,低频分量作用减小,分形粗糙面的粗糙程度增大。根据瑞利判据,粗糙面相对于入射波的粗糙程度,除与粗糙面的高度函数有关还和入射波的频率有关。如普通的目标表面对于微波段来说是光滑的,但相对于太赫兹频段的波来说却是粗糙的。本文主要研究太赫兹波段下目标表面的微粗糙对其散射特性的影响。2.2 分形表面粗糙目标模型
目标表面粗糙度引起的表面起伏一般在其对应的光滑表面的法线方向[14]。因此,对于轴对称旋转目标而言,其表面的粗糙度可近似考虑为对应母线的起伏。将生成的1维分形粗糙面叠加到光滑目标模型对应的母线进行坐标变换,建立具有分形粗糙表面的目标模型。
对于如图2(a)所示的顶部为半球的粗糙钝锥模型,其母线可以表示为:
x={(r1+f(x))cosα,r1+Δhtanβ+f(x)cosβ,y>0y<0 (2) y={(r1+f(x))sinα,Δh+f(x)sinβ,y>0y<0 (3) 其中,r1为顶部半球半径,r2为底面半径,h为下部锥台高度,
β=atan((r2−r1)/h) 。将生成的圆锥母线导入CAD建模软件,对其绕Y轴旋转并进行坐标变换生成如图2(b)所示的具有分形粗糙表面的钝锥模型。2.3 算法理论
由Stratton-Chu积分公式,目标远区散射场利用物理光学可表示为[15]:
Es=−jk4πexp(−jkr)r∫sˆs×[ˆn×E−Z0ˆs×(ˆn×H)]exp(jkr⋅ˆs)ds (4) 其中,k和Z0分别为自由空间的波数和本征阻抗,
ˆs 为散射波的单位矢量,r为表面上一点的位置矢量,ˆn 为目标表面向外单位法矢量,E和H分别为边界上总的电场和总的磁场。涂覆介质表面的散射示意图如图3所示。其中
θi 为入射角,ˆi 和ˆs 分别为入射波和散射波的单位矢量,矢量ˆei∥ 和ˆer∥ 分别为入射电场、反射电场平行入射面的极化方向,矢量ˆe⊥ 为入射电场和反射电场垂直入射面的极化方向。Ei=E⊥ˆe⊥+E∥ˆe∥i,Es=R⊥E⊥ˆe⊥+R∥E∥ˆe∥r (5) 其中,
Ei 为边界上入射电场,Es 为边界上散射电场,E⊥ 和E∥ 分别为入射电场在ˆe⊥ 和ˆei∥ 方向的场分量,R⊥ 和R∥ 分别为涂覆介质表面在垂直极化和水平极化时的反射系数[16]。涂覆目标雷达散射截面的计算公式为:
σ=limR→∞4πR2|Es|2|Ei|2 (6) 3. 数值结果及讨论
3.1 验证算例
为了验证算法的正确性,先通过下面的模型算例加以说明。图4给出了3 GHz平面波TM极化入射下涂覆半球的双站雷达散射截面,其中半球的半径为0.5 m,涂覆厚度为d=2 cm,涂层介质相对介电常数为
εr=36.0 ,相对磁导率为μr=1.0 。RCS结果曲线可以看出物理光学法和多层快速多极子方法(MLFMA)吻合良好,验证了程序的正确性。图5给出了频率为3 THz的平面波入射下导体立方体的单站雷达散射截面,结果与文献[3]中采用多层快速多极子方法结果一致,可以看出物理光学方法用于计算THz频段目标散射的有效性。
3.2 数值结果
对于图2(b)所示的具有分形粗糙表面的钝锥模型,其顶部半球半径r1=1 mm,底面半径r2=3 mm,锥台高度h=12 mm,分形粗糙面的分维数D=1.5,b=1.5,均方根高度
δ=0.02mm 。涂覆材料相对介电常数εr=(4.0,−1.5) ,相对磁导率μr=(2.0,−1.0) ,涂覆层厚度d=0.03 mm。首先对钝锥导入CAD建模软件进行满足物理光学近似的网格剖分,根据菲涅尔反射系数得出钝锥表面电流分布进而计算其散射场。从图6中结果可以看出,对于模型尺寸相同的光滑钝锥与表面粗糙钝锥的单站雷达散射截面曲线走势基本一致,随着入射角的增大,RCS增大,垂直于锥面照射时达到最大峰值。图6(a)入射频率为30 GHz的情况下光滑钝锥与分形粗糙钝锥的RCS除了小角度基本上重合,可以看出在微波频段目标表面的微粗糙度对RCS的影响很小,可以忽略。图6(b)、图6(c)表明太赫兹波段下光滑钝锥和分形粗糙钝锥目标雷达散射截面出现差异,表面的分形粗糙度引起目标RCS曲线震荡起伏,且频率越高起伏越明显,曲线波动越大。因此在太赫兹波段,目标表面的粗糙度对其散射特性的影响需要考虑。
图7给出了入射波频率为3 THz的不同涂层厚度的粗糙表面目标的后向RCS。可以看出相对于表面为导体的情况,涂覆介质以后,钝锥目标的雷达散射截面几乎在所有角度都有明显减小,并且随着涂层厚度的增大,雷达散射截面持续减小。涂覆介质层对雷达散射截面的缩减有明显的作用,在一定范围内随着涂层厚度的增大,涂覆介质对电磁波的吸收增加表面粗糙钝锥的后向RCS减小。
图8给出了不同入射频率下钝锥单站RCS。随着频率的升高,表面粗糙钝锥的后向RCS多数角度下降,且频率越高RCS值下降得越多。随着频率的增大,入射波的波长变小,目标表面的粗糙度与入射波长的比值增大,粗糙度引起的漫散射效应增大,目标RCS受到表面粗糙度的影响,曲线峰值变得不明显。
图9给出了不同表面粗糙度的圆柱模型单站雷达散射截面,其半径为r=16.25 mm,高度为h=102 mm,入射波频率为0.3 THz。
图10给出了不同表面粗糙度的锥柱模型单站雷达散射截面,半径r=16.25 mm,顶部圆锥高度h1=48.5 mm,底部圆柱部分高度h2=102 mm,入射波频率为0.3 THz。从图9和图10给出的结果可以看出,随着均方根高度的增加,目标表面的粗糙度变大,相对于0.3 THz的入射波其波长仅有1 mm,目标更加粗糙,粗糙度对目标的散射结果影响增大。当粗糙度较小时,RCS曲线可以看作是在光滑模型散射结果叠加小起伏震荡;粗糙度增大以后由表面粗糙度引起的RCS起伏甚至在某些角度可以改变光滑模型的散射曲线。
4. 结论
本文参考分形粗糙面模拟随机环境的方法来建立具有分形粗糙表面目标,采用基于基尔霍夫近似的物理光学方法研究了涂覆目标的太赫兹散射特性。分析了不同的入射波频率以及不同涂层厚度的分形粗糙表面模型在太赫兹波段的散射特性。相对于微波频段波长远大于目标表面微米量级的粗糙度,粗糙度的影响可以不考虑,而在太赫兹波段,波长与粗糙度处于等量级,必须考虑到粗糙度对于目标散射结果的影响。目标表面有涂覆介质材料时,目标的雷达散射截面小于导体情况下的结果,且在一定的范围内涂覆层越厚,目标雷达散射截面吸收越明显。
-
表 1 生成器结构
Table 1. The structure of generator
层名称 参数设置 输入层随机噪声 1×100 全连接层
维度变换256×64
1×256×64卷积层1,批归一化,
LeakyReLU,上采样Filters = 128, kernel_size = 1×3,
strides = 1, padding = same卷积层3 Filters = 128 卷积层4 Filters = 64 卷积层5 Filters = 32 卷积层6 Filters = 1 Flatten,全连接层
输出层1000
1×1000信号向量表 2 仿真数据的训练集和测试集设置
Table 2. Training and test set settings for simulation data
数据集 类别 E1 E2 E3 E4 E5 标准训练集 480 480 480 480 480 标准测试集 480 480 480 480 480 训练集1 10 10 100 480 480 训练集2 10 20 200 180 480 训练集3 480 480 480 20 80 训练集4 50 50 180 480 300 表 3 不同损失函数在不同信噪比下的性能评估(%)
Table 3. Performance evaluation of loss functions under different SNRs (%)
训练集 损失函数 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 12 dB 14 dB 16 dB 18 dB 20 dB 22 dB 24 dB
标准训练集CE 49.33 51.17 53.36 58.64 65.47 72.44 85.16 90.88 94.64 96.48 99.23 99.76 99.80 FL 48.78 50.97 54.29 57.97 64.31 70.84 86.10 91.12 93.77 92.57 98.68 98.56 98.65 ICL 48.31 51.26 54.33 56.19 62.99 68.09 85.84 89.55 94.05 95.69 96.02 98.27 99.31 训练集1 CE 29.88 35.14 37.32 39.24 39.88 40.04 41.52 42.63 45.68 48.52 74.72 79.87 82.61 FL 30.13 33.16 36.08 38.84 40.40 42.32 41.96 43.08 45.12 48.60 74.16 80.77 84.16 ICL 30.65 36.47 35.04 38.39 41.26 43.77 44.27 45.46 49.00 54.24 74.84 83.13 85.36 训练集2 CE 19.77 24.13 25.80 29.48 30.56 39.72 42.76 54.52 55.20 75.96 79.56 80.15 81.36 FL 23.08 25.55 24.16 25.76 33.16 36.24 36.44 55.80 57.24 73.00 80.24 81.66 83.48 ICL 24.11 26.67 26.77 28.94 35.29 40.94 42.96 53.97 59.33 77.04 79.64 81.08 84.70 训练集3 CE 28.09 32.40 33.57 36.74 42.17 46.38 49.44 50.36 55.56 64.36 73.49 77.76 79.40 FL 33.68 33.19 38.45 38.77 42.54 45.29 48.37 51.94 52.79 66.81 74.31 77.56 78.04 ICL 32.41 36.97 40.60 40.88 44.28 46.00 49.64 50.96 56.44 65.52 75.88 79.54 80.92 训练集4 CE 30.11 31.79 35.88 36.08 43.12 45.00 48.36 60.08 62.03 64.28 70.80 72.61 78.54 FL 31.25 33.57 36.40 40.36 42.96 43.84 54.56 62.36 64.40 64.88 74.16 73.77 79.76 ICL 32.97 33.22 36.42 41.32 44.04 47.52 56.24 64.76 67.04 68.24 81.60 82.77 83.84 表 4 不同算法识别准确率对比(%)
Table 4. Comparison of recognition accuracy of different schemes (%)
算法 0 dB 4 dB 8 dB 12 dB 16 dB 20 dB 24 dB 本文方法+CE 30.11 35.88 43.12 48.36 62.03 70.80 78.54 本文方法+ICL 32.97 36.42 44.04 56.24 67.04 81.60 83.84 方法1+CE 27.53 31.76 37.72 44.80 59.36 64.43 73.36 方法1+ICL 28.12 32.64 39.53 49.08 63.96 72.12 75.24 方法2+CE 26.46 33.18 41.07 46.08 60.47 68.00 77.36 方法2+ICL 29.16 34.56 42.28 51.32 65.23 75.16 79.00 方法3 34.82 33.46 40.61 50.92 57.77 67.18 71.49 方法4 20.96 25.10 34.64 45.69 57.14 58.06 67.18 表 5 网络复杂度对比
Table 5. Network complexity comparison
网络模型 空间复杂度
NO (M)迭代平均
耗时ttrain (s)平均识别
时间ttest (s)IC-SGAN 1.97+3.93 90.8 3.1 RFFE-InfoGAN 2.52+19.57 207.0 4.6 E3SGAN 4.25+4.61 110.5 2.8 表 6 真实数据的训练集和测试集设置
Table 6. Training set and test set settings for real data
数据集 类别 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 标准训练集 480 480 480 480 480 480 480 480 480 480 标准测试集 240 240 240 240 240 240 240 240 240 240 训练集1 48 480 48 480 48 480 48 480 48 480 训练集2 120 480 120 480 120 480 120 480 120 480 训练集3 480 48 480 48 480 48 480 48 480 48 训练集4 480 120 480 120 480 120 480 120 480 120 表 7 3类损失函数的识别性能评估(%)
Table 7. Recognition performance evaluation of three loss functions (%)
训练集 损失函数 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 Average 标准训练集 CE 93.52 89.78 87.27 85.34 85.47 86.80 88.03 FL 97.39 87.64 88.21 89.66 87.28 85.32 89.25 ICL 94.60 88.36 90.46 88.56 86.72 86.38 89.18 训练集1 CE 90.16 78.35 76.40 72.38 70.87 62.76 75.15 FL 91.68 79.76 79.35 74.61 74.98 65.18 77.59 ICL 93.48 84.07 82.37 77.56 72.65 68.92 79.84 训练集2 CE 86.88 80.17 78.46 70.02 69.42 71.43 76.06 FL 91.54 78.12 81.98 68.33 72.13 72.16 77.37 ICL 90.53 83.41 76.29 72.21 74.87 68.59 77.65 训练集3 CE 88.57 79.44 74.67 71.62 73.51 66.94 75.79 FL 91.05 82.56 76.26 69.50 76.38 69.48 77.53 ICL 93.37 84.50 79.18 75.43 78.86 72.86 80.70 训练集4 CE 86.72 79.98 83.43 74.34 73.29 65.74 77.25 FL 84.07 82.40 77.53 77.07 75.82 68.09 77.49 ICL 83.46 84.98 79.25 77.33 79.48 71.38 79.31 -
[1] XING Yuexiu, HU Aiqun, ZHANG Junqing, et al. Design of a robust radio-frequency fingerprint identification scheme for multimode LFM radar[J]. IEEE Internet of Things Journal, 2020, 7(10): 10581–10593. doi: 10.1109/JIOT.2020.3003692 [2] SANKHE K, BELGIOVINE M, ZHOU Fan, et al. No radio left behind: Radio fingerprinting through deep learning of physical-layer hardware impairments[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 165–178. doi: 10.1109/TCCN.2019.2949308 [3] POLAK A C, DOLATSHAHI S, and GOECKEL D L. Identifying wireless users via transmitter imperfections[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(7): 1469–1479. doi: 10.1109/JSAC.2011.110812 [4] SUN Jinlong, SHI Wenjuan, YANG Zhutian, et al. Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10348–10356. doi: 10.1109/TVT.2019.2925562 [5] 潘一苇, 杨司韩, 彭华, 等. 基于矢量图的特定辐射源识别方法[J]. 电子与信息学报, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification using signal trajectory image[J]. Journal of Electronics &Information Technology, 2020, 42(4): 941–949. doi: 10.11999/JEIT190329 [6] DIGNE F, BAUSSARD A, KHENCHAF A, et al. Classification of radar pulses in a naval warfare context using Bézier curve modeling of the instantaneous frequency law[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1469–1480. doi: 10.1109/TAES.2017.2671578 [7] GUO Shanzeng, AKHTAR S, and MELLA A. A method for radar model identification using time-domain transient signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3132–3149. doi: 10.1109/TAES.2021.3074129 [8] URETEN O and SERINKEN N. Bayesian detection of Wi-Fi transmitter RF fingerprints[J]. Electronics Letters, 2005, 41(6): 373–374. doi: 10.1049/el:20057769 [9] GONG Jialiang, XU Xiaodong, and LEI Yingke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898–2913. doi: 10.1109/TIFS.2020.2978620 [10] YAO Yanyan, YU Lu, and CHEN Yiming. Specific emitter identification based on square integral bispectrum features[C]. 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 2020: 1311–1314. [11] ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908 [12] YUAN Yingjun, HUANG Zhitao, WU Hao, et al. Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features[J]. IET Communications, 2014, 8(13): 2404–2412. doi: 10.1049/iet-com.2013.0865 [13] PAN Yiwei, YANG Sihan, PENG Hua, et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7: 54425–54434. doi: 10.1109/ACCESS.2019.2913759 [14] 秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084 [15] SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(3): 581–591. doi: 10.1109/TIFS.2018.2855665 [16] SA Kejin, LANG Dapeng, WANG Chenggang, et al. Specific emitter identification techniques for the internet of things[J]. IEEE Access, 2020, 8: 1644–1652. doi: 10.1109/ACCESS.2019.2962626 [17] MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446 [18] QIAN Yunhan, QI Jie, KUAI Xiaoyan, et al. Specific emitter identification based on multi-level sparse representation in automatic identification system[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2872–2884. doi: 10.1109/TIFS.2021.3068010 [19] WU Qingyang, FERES C, KUZMENKO D, et al. Deep learning based RF fingerprinting for device identification and wireless security[J]. Electronics Letters, 2018, 54(24): 1405–1407. doi: 10.1049/el.2018.6404 [20] WANG Xuebao, HUANG Gaoming, MA Congshan, et al. Convolutional neural network applied to specific emitter identification based on pulse waveform images[J]. IET Radar, Sonar & Navigation, 2020, 14(5): 728–735. doi: 10.1049/iet-rsn.2019.0456 [21] 何遵文, 侯帅, 张万成, 等. 通信特定辐射源识别的多特征融合分类方法[J]. 通信学报, 2021, 42(2): 103–112. doi: 10.11959/j.issn.1000-436x.2021028HE Zunwen, HOU Shuai, ZHANG Wancheng, et al. Multi-feature fusion classification method for communication specific emitter identification[J]. Journal on Communications, 2021, 42(2): 103–112. doi: 10.11959/j.issn.1000-436x.2021028 [22] ZHOU Huaji, JIAO Licheng, ZHENG Shilian, et al. Generative adversarial network-based electromagnetic signal classification: A semi-supervised learning framework[J]. China Communications, 2020, 17(10): 157–169. doi: 10.23919/JCC.2020.10.011 [23] ABDI L and HASHEMI S. To combat multi-class imbalanced problems by means of over-sampling techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 238–251. doi: 10.1109/TKDE.2015.2458858 [24] BUNKHUMPORNPAT C, SINAPIROMSARAN K, and LURSINSAP C. DBSMOTE: Density-based synthetic minority over-sampling technique[J]. Applied Intelligence, 2012, 36(3): 664–684. doi: 10.1007/s10489-011-0287-y [25] KANG Qi, CHEN Xiaoshuang, LI Sisi, et al. A noise-filtered under-sampling scheme for imbalanced classification[J]. IEEE Transactions on Cybernetics, 2017, 47(12): 4263–4274. doi: 10.1109/TCYB.2016.2606104 [26] HOU Yun, LI Li, LI Bailin, et al. An anti-noise ensemble algorithm for imbalance classification[J]. Intelligent Data Analysis, 2019, 23(6): 1205–1217. doi: 10.3233/IDA-184354 [27] KRAWCZYK B, WOŹNIAK M, and SCHAEFER G. Cost-sensitive decision tree ensembles for effective imbalanced classification[J]. Applied Soft Computing, 2014, 14: 554–562. doi: 10.1016/j.asoc.2013.08.014 [28] DUAN Wei, JING Liang, and LU Xiangyang. Imbalanced data classification using cost-sensitive support vector machine based on information entropy[J]. Advanced Materials Research, 2014, 989/994: 1756–1761. doi: 10.4028/www.scientific.net/AMR.989-994.1756 [29] ZHANG Zhongliang, LUO Xinggang, GARCÍA S, et al. Cost-sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers[J]. Applied Soft Computing, 2017, 56: 357–367. doi: 10.1016/j.asoc.2017.03.016 [30] DHAR S and CHERKASSKY V. Development and evaluation of cost-sensitive universum-SVM[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 806–818. doi: 10.1109/TCYB.2014.2336876 [31] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680. [32] RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. arXiv: 1511.06434[cs.LG], 2015. https://arxiv.org/abs/1511.06434. [33] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. [34] ZHANG Linbin, ZHANG Caiguang, QUAN Sinong, et al. A class imbalance loss for imbalanced object recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2778–2792. doi: 10.1109/JSTARS.2020.2995703 [35] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. doi: 10.1109/TPAMI.2018.2858826 [36] KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573–3587. doi: 10.1109/TNNLS.2017.2732482 期刊类型引用(4)
1. 杨帆,何嘉岳,杨瑶佳,金一飞,许慎恒,李懋坤. 界面电磁学的理论与应用. 微波学报. 2023(05): 52-61 . 百度学术
2. 王禄炀,兰峰,宋天阳,何贵举,潘一博,张雅鑫,陈智,杨梓强. 多功能动态波束调控的太赫兹编码超表面. 无线电通信技术. 2022(02): 247-252 . 百度学术
3. 周嵩林,唐隽文,刘罗颢,吴优,刘长昊,金一飞,杨帆,许慎恒,李懋坤. 基于电磁表面的阵列天线及应用概述. 通信学报. 2022(12): 13-23 . 百度学术
4. 李国英,嵇成高,于刚刚,关浩. 相控雷达成像测井仪器中收发天线系统设计. 测井技术. 2022(06): 696-700+706 . 百度学术
其他类型引用(1)
-