Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System
-
摘要: 雷达通信一体化是解决频谱资源拥挤问题的有效途径之一,而共享波形设计是同时实现雷达与通信功能的关键技术,该文旨在解决智能反射面(IRS)辅助雷达通信双功能(DRC)系统的多载波波形优化问题。首先,通过最大化传输功率、通信码字错误率(WEP)、旁瓣幅度与IRS反射系数约束下的雷达互信息(RMI),构建了双功能发射波形、IRS反射单元、雷达与通信接收波束联合优化模型。其次,提出了基于交替方向最大化(ADM)的多载波波形优化算法,通过将原非凸优化问题分解为若干低复杂度子问题并迭代优化,获得了多载波波形功率分配策略的局部最优解。最后,仿真结果表明,ADM算法能同时实现雷达与通信功能;相较于现有方法有效提升了IRS辅助DRC系统的雷达与通信性能。Abstract: Radar-communication integration is an effective way to solve the congestion problem of spectrum resource. Sharing waveform design is the key technology that realizes the radar and communication functions simultaneously. This study solves the multicarrier waveform optimization problem for an Intelligent Reflecting Surface (IRS)-assisted Dual-function Radar-Communication (DRC) system. First, by maximizing Radar Mutual Information (RMI) along with the constraints of transmission power, Word Error Probability (WEP), sidelobe amplitude and IRS reflection coefficient, a joint optimization model with dual-functional transmit waveform, IRS reflecting units, radar and communication receiving beampattern is constructed. Second, a multicarrier waveform optimization algorithm based on Alternating Direction Maximization (ADM) is proposed. The original non-convex optimization problem is decomposed into several low-complexity subproblems and then iteratively optimized to obtain the local power allocation strategy of the multicarrier waveform. Finally, the simulation results show that the radar and communication functions can be simultaneously realized using the ADM algorithm. For the IRS-assisted DRC system, both the radar and communication performances can be effectively improved compared with those of the existing methods.
-
1. 引言
近年来关于太赫兹的研究日趋增加,相对于微波频段雷达,太赫兹雷达以其更高的空间分辨率和角分辨率具有更大的优势受到了越来越多的重视[1,2]。太赫兹辐射的光子能量低,对穿透物不会造成损伤,并且可以穿过大多数介电物质,实现无损检测。太赫兹波具有穿透性,能够实现对隐蔽物体的有效检测,可应用于安检相关的领域。太赫兹频段相比于微波频段频率更高,更容易发射大带宽信号,具有更高的分辨率,具有海量的频谱资源,可用于超宽带超高速无线通信。太赫兹波段目标表面的细微结构、粗糙度等细节会显著影响其后向散射特性,实现更小尺寸目标的探测、更精确目标的运动与物理参数反演[3]。太赫兹(terahertz, THz)波段位于微波与红外波之间,其频率范围为0.1~10 THz (1 THz=1012 Hz),对应的波长为30 μm~3 mm。太赫兹频段目标散射特性是太赫兹雷达探测和成像应用的物理基础[4,5],同时也是太赫兹雷达系统进行链路设计、特征提取以及成像算法的重要依据。国内首都师范大学太赫兹实验室研制了太赫兹数字全息成像系统,对太赫兹电磁波的振幅、相位、频率及偏振等全部光学信息的3维空间分布进行精确测量[6]。针对太赫兹波段目标的散射特性,美国麻省LOWELL大学毫米波实验室利用1.56 THz源在紧缩场中对粗糙表面圆柱体的目标散射特性进行了研究[4]。天津大学太赫兹研究中心搭建了以0.2 THz返波管振荡器源、热释电探测器、小型自动旋转光学平台等组成的太赫兹波目标散射特性实验测试系统,并对粗糙铜面的散射特性等进行了研究[7,8]。对于介质[9]和涂覆目标的太赫兹散射,北京航空航天大学江月松等人考虑粗糙度修正表面的散射系数研究了基于经验公式的涂覆目标的太赫兹散射特性[10]。
本文区别于以往采用经验公式[10]以粗糙度修正散射系数的研究方法,把随机粗糙面的建模理念应用到太赫兹波段表面粗糙目标的建模中。首先模拟生成了分形粗糙面近似代替实际复杂的粗糙面,对生成的分形粗糙面进行坐标变换导入计算机辅助设计(Computer Aided Design, CAD)建模软件建立具有粗糙表面的目标模型;然后对表面粗糙目标按照入射波的频率以满足物理光学近似的要求进行剖分。根据菲涅尔反射系数求得表面电流进而计算涂覆粗糙目标的雷达散射截面(Radar Cross Section, RCS)。并针对不同频率以及不同涂覆厚度的表面粗糙涂覆目标,分别进行了仿真分析。
2. 表面粗糙目标模型
2.1 分形粗糙面
自1982年Mandelbrot首次提出“分形”的概念[11],指的是组成部分与整体以某种方式相形似,分形理论就在很多领域中得到应用。“分形”不同于通常意义上的长度、面积、体积等几何概念,分形内部的任何一个相对独立的部分,在一定程度上都应该是整体的再现和缩影,分形几何体内部存在无穷层次、具有见微知著、由点及面的自相似结构,即具有自相似性。由于粗糙面一般具有非线性的几何结构,因此采用非线性的方法模拟粗糙面更能反映其物理本质。自然界的许多物体,如地、海表面、植被和森林等都在一定尺度范围内存在统计意义上的自相似性,由此很多学者将分形理论应用于电磁散射领域中,用于粗糙面的模拟[12,13]。
1维带限Weierstrass-Mandelbrot分形函数的表达式为:
f(x)=√2δ[1−b(2D−4)]1/2[b(2D−4)N1−b(2D−4)(N2+1)]1/2⋅N2∑n=N1b(D−2)ncos(2πsbnx+φn) (1) 其中,
δ 为高度的均方根,b是空间基频,D为分形维数(1<D<2),s为标度因子(s=K0/2π , K0为空间波数),φn 为(0,2π) 上均匀分布的随机相位,该函数具有零均值。一般取b>1,b为有理数时,f(x)表现为周期函数;b为无理数时,f(x)为准周期函数。标度因子s决定频谱的位置,f(x)的无标度区间一般取(sbN1)−1 和(sbN2)−1 ,N=N2−N1+1 ,随着N的增加,越来越多的频率分量加到准周期。图1给出了1维分形粗糙面模型,当分维数D增加时,高频分量比重加大,低频分量作用减小,分形粗糙面的粗糙程度增大。根据瑞利判据,粗糙面相对于入射波的粗糙程度,除与粗糙面的高度函数有关还和入射波的频率有关。如普通的目标表面对于微波段来说是光滑的,但相对于太赫兹频段的波来说却是粗糙的。本文主要研究太赫兹波段下目标表面的微粗糙对其散射特性的影响。2.2 分形表面粗糙目标模型
目标表面粗糙度引起的表面起伏一般在其对应的光滑表面的法线方向[14]。因此,对于轴对称旋转目标而言,其表面的粗糙度可近似考虑为对应母线的起伏。将生成的1维分形粗糙面叠加到光滑目标模型对应的母线进行坐标变换,建立具有分形粗糙表面的目标模型。
对于如图2(a)所示的顶部为半球的粗糙钝锥模型,其母线可以表示为:
x={(r1+f(x))cosα,r1+Δhtanβ+f(x)cosβ,y>0y<0 (2) y={(r1+f(x))sinα,Δh+f(x)sinβ,y>0y<0 (3) 其中,r1为顶部半球半径,r2为底面半径,h为下部锥台高度,
β=atan((r2−r1)/h) 。将生成的圆锥母线导入CAD建模软件,对其绕Y轴旋转并进行坐标变换生成如图2(b)所示的具有分形粗糙表面的钝锥模型。2.3 算法理论
由Stratton-Chu积分公式,目标远区散射场利用物理光学可表示为[15]:
Es=−jk4πexp(−jkr)r∫sˆs×[ˆn×E−Z0ˆs×(ˆn×H)]exp(jkr⋅ˆs)ds (4) 其中,k和Z0分别为自由空间的波数和本征阻抗,
ˆs 为散射波的单位矢量,r为表面上一点的位置矢量,ˆn 为目标表面向外单位法矢量,E和H分别为边界上总的电场和总的磁场。涂覆介质表面的散射示意图如图3所示。其中
θi 为入射角,ˆi 和ˆs 分别为入射波和散射波的单位矢量,矢量ˆei∥ 和ˆer∥ 分别为入射电场、反射电场平行入射面的极化方向,矢量ˆe⊥ 为入射电场和反射电场垂直入射面的极化方向。Ei=E⊥ˆe⊥+E∥ˆe∥i,Es=R⊥E⊥ˆe⊥+R∥E∥ˆe∥r (5) 其中,
Ei 为边界上入射电场,Es 为边界上散射电场,E⊥ 和E∥ 分别为入射电场在ˆe⊥ 和ˆei∥ 方向的场分量,R⊥ 和R∥ 分别为涂覆介质表面在垂直极化和水平极化时的反射系数[16]。涂覆目标雷达散射截面的计算公式为:
σ=limR→∞4πR2|Es|2|Ei|2 (6) 3. 数值结果及讨论
3.1 验证算例
为了验证算法的正确性,先通过下面的模型算例加以说明。图4给出了3 GHz平面波TM极化入射下涂覆半球的双站雷达散射截面,其中半球的半径为0.5 m,涂覆厚度为d=2 cm,涂层介质相对介电常数为
εr=36.0 ,相对磁导率为μr=1.0 。RCS结果曲线可以看出物理光学法和多层快速多极子方法(MLFMA)吻合良好,验证了程序的正确性。图5给出了频率为3 THz的平面波入射下导体立方体的单站雷达散射截面,结果与文献[3]中采用多层快速多极子方法结果一致,可以看出物理光学方法用于计算THz频段目标散射的有效性。
3.2 数值结果
对于图2(b)所示的具有分形粗糙表面的钝锥模型,其顶部半球半径r1=1 mm,底面半径r2=3 mm,锥台高度h=12 mm,分形粗糙面的分维数D=1.5,b=1.5,均方根高度
δ=0.02mm 。涂覆材料相对介电常数εr=(4.0,−1.5) ,相对磁导率μr=(2.0,−1.0) ,涂覆层厚度d=0.03 mm。首先对钝锥导入CAD建模软件进行满足物理光学近似的网格剖分,根据菲涅尔反射系数得出钝锥表面电流分布进而计算其散射场。从图6中结果可以看出,对于模型尺寸相同的光滑钝锥与表面粗糙钝锥的单站雷达散射截面曲线走势基本一致,随着入射角的增大,RCS增大,垂直于锥面照射时达到最大峰值。图6(a)入射频率为30 GHz的情况下光滑钝锥与分形粗糙钝锥的RCS除了小角度基本上重合,可以看出在微波频段目标表面的微粗糙度对RCS的影响很小,可以忽略。图6(b)、图6(c)表明太赫兹波段下光滑钝锥和分形粗糙钝锥目标雷达散射截面出现差异,表面的分形粗糙度引起目标RCS曲线震荡起伏,且频率越高起伏越明显,曲线波动越大。因此在太赫兹波段,目标表面的粗糙度对其散射特性的影响需要考虑。
图7给出了入射波频率为3 THz的不同涂层厚度的粗糙表面目标的后向RCS。可以看出相对于表面为导体的情况,涂覆介质以后,钝锥目标的雷达散射截面几乎在所有角度都有明显减小,并且随着涂层厚度的增大,雷达散射截面持续减小。涂覆介质层对雷达散射截面的缩减有明显的作用,在一定范围内随着涂层厚度的增大,涂覆介质对电磁波的吸收增加表面粗糙钝锥的后向RCS减小。
图8给出了不同入射频率下钝锥单站RCS。随着频率的升高,表面粗糙钝锥的后向RCS多数角度下降,且频率越高RCS值下降得越多。随着频率的增大,入射波的波长变小,目标表面的粗糙度与入射波长的比值增大,粗糙度引起的漫散射效应增大,目标RCS受到表面粗糙度的影响,曲线峰值变得不明显。
图9给出了不同表面粗糙度的圆柱模型单站雷达散射截面,其半径为r=16.25 mm,高度为h=102 mm,入射波频率为0.3 THz。
图10给出了不同表面粗糙度的锥柱模型单站雷达散射截面,半径r=16.25 mm,顶部圆锥高度h1=48.5 mm,底部圆柱部分高度h2=102 mm,入射波频率为0.3 THz。从图9和图10给出的结果可以看出,随着均方根高度的增加,目标表面的粗糙度变大,相对于0.3 THz的入射波其波长仅有1 mm,目标更加粗糙,粗糙度对目标的散射结果影响增大。当粗糙度较小时,RCS曲线可以看作是在光滑模型散射结果叠加小起伏震荡;粗糙度增大以后由表面粗糙度引起的RCS起伏甚至在某些角度可以改变光滑模型的散射曲线。
4. 结论
本文参考分形粗糙面模拟随机环境的方法来建立具有分形粗糙表面目标,采用基于基尔霍夫近似的物理光学方法研究了涂覆目标的太赫兹散射特性。分析了不同的入射波频率以及不同涂层厚度的分形粗糙表面模型在太赫兹波段的散射特性。相对于微波频段波长远大于目标表面微米量级的粗糙度,粗糙度的影响可以不考虑,而在太赫兹波段,波长与粗糙度处于等量级,必须考虑到粗糙度对于目标散射结果的影响。目标表面有涂覆介质材料时,目标的雷达散射截面小于导体情况下的结果,且在一定的范围内涂覆层越厚,目标雷达散射截面吸收越明显。
-
表 1 基于ADM的多载波波形优化算法
Table 1. ADM based multicarrier waveform optimization method
1 输入:发射和接收阵元数NT和NR;IRS阵元数M;方位角θ0, θ1, θris, θrist, φ, ˜φ, ϕ0和ϕ1;子载波数K;
传输总功率Pt;信道系数方差σ2r,k, σ2c,k, σ20,k, σ21,k, σ2ris,k, σ2rist,k, σ2β,0,k, σ2β,1,k和σ2γ,k;旁瓣幅度数L;停止准则ε。2 输出:双功能发射波束形成矢量 {{\boldsymbol u}_k} ;接收波束形成矢量 {{\boldsymbol w}_k} ;RMI。 3 初始化: {\boldsymbol u}_k^0 , {{\boldsymbol Q}^0} , {\boldsymbol v}_k^0 和 {\boldsymbol w}_k^0 ;迭代索引 j 。 4 求解松弛优化问题(16)获得 {\boldsymbol u}_k^j ; 5 求解半正定凸问题(25)获得 {{\boldsymbol Q}^j} ; 6 根据式(29)获得 {\boldsymbol v}_k^j ; 7 根据式(32)获得 {\boldsymbol w}_k^j ; 8 判断式(10)的收敛条件是否满足;若满足,停止迭代;反之, j = j + 1 ,并转向步骤4。 -
[1] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113 [2] CAA. Public sector spectrum release programme: Radar planning and spectrum sharing in the 2.7~2.9 GHz bands[EB/OL]. https://www.caa.co.uk/commercial-industry/airspace/communication-navigation-and-surveillance/spectrum. [3] TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485 [4] MAZUMDER S, DURAND J P, MEYER S L, et al. High-band digital preprocessor (HBDP) for the AMRFC test-bed[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1065–1071. doi: 10.1109/TMTT.2005.843511 [5] PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038 [6] OZKAPTAN C D, EKICI E, and ALTINTAS O. Adaptive waveform design for communication-enabled automotive radars[J]. IEEE Transactions on Wireless Communications, 2021. doi: 10.1109/TWC.2021.3125924. [7] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832 [8] QUAN Siji, QIAN Weiping, GUO Junhai, et al. Radar-communication integration: An overview[C]. The 7th IEEE/International Conference on Advanced Infocomm Technology (ICAIT), Fuzhou, China, 2014: 98–103. doi: 10.1109/ICAIT.2014.7019537. [9] 刘永军. 基于OFDM的雷达通信一体化设计方法研究[D]. [博士论文], 西安电子科技大学, 2019.LIU Yongjun. Study on integrated radar and communications design method based on OFDM[D]. [Ph. D. dissertation], Xidian University, 2019. [10] CAGER R, LAFLAME D, and PARODE L. Orbiter Ku-band integrated radar and communications subsystem[J]. IEEE Transactions on Communications, 1978, 26(11): 1604–1619. doi: 10.1109/TCOM.1978.1094004 [11] HAN Liang and WU Ke. 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619–631. doi: 10.1109/TMTT.2011.2179552 [12] HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. doi: 10.1109/TMTT.2011.2138156 [13] MOGHADDASI J and WU Ke. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform[J]. IEEE Access, 2016, 4: 818–838. doi: 10.1109/ACCESS.2016.2530979 [14] MISHRA A K and INGGS M. FOPEN capabilities of commensal radars based on whitespace communication systems[C]. 2014 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2014: 1–5. doi: 10.1109/CONECCT.2014.6740313. [15] WINKLER V and DETLEFSEN J. Automotive 24 GHz pulse radar extended by a DQPSK communication channel[C]. The 4th European Radar Conference, Munich, Germany, 2007: 138–141. doi: 10.1109/EURAD.2007.4404956. [16] SURENDER S C, NARAYANAN R M, and DAS C R. Performance analysis of communications & radar coexistence in a covert UWB OSA system[C]. 2010 IEEE Global Telecommunications Conference, Miami, USA, 2010: 1–5. doi: 10.1109/GLOCOM.2010.5683837. [17] 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multicarrier frequency modulation chirp signal[J]. Journal of Electronics &Information Technology, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567 [18] TAKASE H and SHINRIKI M. A dual-use radar and communication system with complete complementary codes[C]. 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–4. doi: 10.1109/IRS.2014.6869268. [19] LI Xiaobai, YANG Ruijuan, ZHANG Zunquan, et al. Research of constructing method of complete complementary sequence in integrated radar and communication[C]. 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 2012: 1729–1732. doi: 10.1109/ICoSP.2012.6491914. [20] XU Shaojian, CHEN Yan, and ZHANG Peng. Integrated radar and communication based on DS-UWB[C]. 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, 2006: 142–144. doi: 10.1109/UWBUS.2006.307182. [21] GARMATYUK D, SCHUERGER J, MORTON Y T, et al. Feasibility study of a multi-carrier dual-use imaging radar and communication system[C]. The 37th European Microwave Conference, Munich, Germany, 2007: 1473–1476. doi: 10.1109/EUMC.2007.4405484. [22] RUGGIANO M and VAN GENDEREN P. Wideband ambiguity function and optimized coded radar signals[C]. The 4th European Radar Conference, Munich, Germany, 2007: 142–145. doi: 10.1109/EURAD.2007.4404957. [23] 刘少华, 黄志星. 基于扩频的雷达通信一体化信号的设计[J]. 雷达科学与技术, 2014, 12(1): 69–75. doi: 10.3969/j.issn.1672-2337.2014.01.012LIU Shaohua and HUANG Zhixing. Design of integrated radar-communication signal based on spread spectrum[J]. Radar Science and Technology, 2014, 12(1): 69–75. doi: 10.3969/j.issn.1672-2337.2014.01.012 [24] 赵玉振, 陈龙永, 张福博, 等. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报, 2021, 10(3): 453–466. doi: 10.12000/JR21028ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453–466. doi: 10.12000/JR21028 [25] GARMATYUK D, SCHUERGER J, KAUFFMAN K, et al. Wideband OFDM system for radar and communications[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–6. doi: 10.1109/RADAR.2009.4977024. [26] LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026 [27] SIT Y L, REICHARDT L, STURM C, et al. Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario[C]. 2011 IEEE Radar Conference, Kansas City, USA, 2011: 718–723. doi: 10.1109/RADAR.2011.5960632. [28] 李自琦, 梅进杰, 胡登鹏, 等. 基于分组格雷编码的OFDM雷达通信一体化系统峰均功率比抑制[J]. 雷达学报, 2014, 3(5): 548–555. doi: 10.3724/SP.J.1300.2014.14059LI Ziqi, MEI Jinjie, HU Dengpeng, et al. Peak-to-Average power ratio reduction for integration of radar and communication systems based on OFDM signals with block Golay coding[J]. Journal of Radars, 2014, 3(5): 548–555. doi: 10.3724/SP.J.1300.2014.14059 [29] NOWAK M, WICKS M, ZHANG Zhiping, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236 [30] GAGLIONE D, CLEMENTE C, ILIOUDIS C V, et al. Waveform design for communicating radar systems using fractional Fourier transform[J]. Digital Signal Processing, 2018, 80: 57–69. doi: 10.1016/j.dsp.2018.05.002 [31] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648 [32] EDARA I P, HASSANIEN A, AMIN M G, et al. Ambiguity function analysis for dual-function radar communications using PSK signaling[C]. 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 900–904. doi: 10.1109/ACSSC.2018.8645328. [33] HASSANIEN A, AMIN M G, ZHANG Y D, et al. A dual function radar-communications system using sidelobe control and waveform diversity[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1260–1263. doi: 10.1109/RADAR.2015.7131188. [34] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667 [35] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications using phase-rotational invariance[C]. 2015 23rd European Signal Processing Conference, Nice, France, 2015: 1346–1350. doi: 10.1109/EUSIPCO.2015.7362603. [36] AHMED A, ZHANG Y D, and GU Yujie. Dual-function radar-communications using QAM-based sidelobe modulation[J]. Digital Signal Processing, 2018, 82: 166–174. doi: 10.1016/j.dsp.2018.06.018 [37] TIAN Tuanwei, LI Guchong, and ZHOU Tao. Power distribution for an OFDM-based dual-function Radar-Communication sensor[J]. IEEE Sensors Letters, 2020, 4(11): 5501504. doi: 10.1109/LSENS.2020.3033044 [38] TIAN Tuanwei, ZHANG Tianxian, KONG Lingjiang, et al. Transmit/receive beamforming for MIMO-OFDM based dual-function radar and communication[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4693–4708. doi: 10.1109/TVT.2021.3072094 [39] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107 [40] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211 [41] HU Jingzhi, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface based rf sensing: Design, optimization, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2700–2716. doi: 10.1109/JSAC.2020.3007041 [42] HUANG Kewen and WANG Huiming. Passive beamforming for IRS aided wireless networks[J]. IEEE Wireless Communications Letters, 2020, 9(12): 2035–2039. doi: 10.1109/LWC.2020.3011596 [43] DE JESUS TORRES A, SANGUINETTI L, and BJÖRNSON E. Electromagnetic interference in RIS-aided communications[J]. IEEE Wireless Communications Letters, in press, 2021. doi: 10.1109/LWC.2021.3124584. [44] WANG Jun, LIANG Yingchang, HAN Shiying, et al. Robust beamforming and phase shift design for IRS-enhanced multi-user MISO downlink communication[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148947. [45] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135 [46] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044 [47] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055 [48] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887 [49] WANG Fangzhou, LI Hongbin, and FANG Jun. Joint active and passive beamforming for IRS-assisted radar[J]. IEEE Signal Processing Letters, 2021. [50] LU Wei, LIN Qiang, SONG Ningzhe, et al. Target detection in intelligent reflecting surface aided distributed MIMO radar systems[J]. IEEE Sensors Letters, 2021, 5(3): 7000804. doi: 10.1109/LSENS.2021.3061534 [51] AUBRY A, DE MAIO A, and ROSAMILIA M. Reconfigurable intelligent surfaces for N-LOS radar surveillance[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10735–10749. doi: 10.1109/TVT.2021.3102315 [52] 施宏宇, 李国强, 刘康, 等. 基于反射型超表面的太赫兹偏折涡旋波束生成[J]. 雷达学报, 2021, 10(5): 785–793. doi: 10.12000/JR21070SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070 [53] BUZZI S, GROSSI E, LOPS M, et al. Foundations of MIMO radar detection aided by reconfigurable intelligent surfaces[EB/OL]. https://arxiv.org/abs/2105.09250, 2021. [54] WANG Xinyi, FEI Zesong, GUO Jing, et al. RIS-assisted spectrum sharing between MIMO radar and MU-MISO communication systems[J]. IEEE Wireless Communications Letters, 2021, 10(3): 594–598. doi: 10.1109/LWC.2020.3039369 [55] WANG Xinyi, FEI Zesong, ZHENG Zhong, et al. Joint Waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5131–5136. doi: 10.1109/TVT.2021.3075497 [56] BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642 [57] AN Lin, LI Ming, ZHANG Peng, et al. Multicontextual mutual information data for SAR image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1863–1867. doi: 10.1109/LGRS.2015.2432071 [58] ZHANG Haowei, ZONG Binfeng, and XIE Junwei. Power and bandwidth allocation for multi-target tracking in collocated MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9795–9806. doi: 10.1109/TVT.2020.3002899 [59] 王璐璐. 基于信息论的自适应波形设计[D]. [博士论文], 国防科学技术大学, 2015. doi: 10.7666/d.D01107893.WANG Lulu. Adaptive waveform design based on information theory[D]. [Ph. D. dissertation], National University of Defense Technology, 2015. doi: 10.7666/d.D01107893. [60] 张钰. 基于最大互信息准则的认知雷达波形优化算法研究[D]. [硕士论文], 西安电子科技大学, 2012. doi: 10.7666/d.d216380.ZHANG Yu. Study on the waveform design algorithm for cognitive radar based on maximum mutual information rule[D]. [Master dissertation], Xidian University, 2012. doi: 10.7666/d.d216380. [61] TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186 [62] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072 [63] TIAN Tuanwei, ZHANG Tianxian, LI Guchong, et al. Mutual information-based power allocation and co-design for multicarrier radar and communication systems in coexistence[J]. IEEE Access, 2019, 7: 159300–159312. doi: 10.1109/ACCESS.2019.2950890 [64] TIAN Tuanwei, ZHANG Tianxian, KONG Lingjiang, et al. Mutual information based partial band coexistence for joint radar and communication system[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–5. doi: 10.1109/RADAR.2019.8835671. [65] TKACENKO A and VAIDYANATHAN P P. Iterative greedy algorithm for solving the FIR paraunitary approximation problem[J]. IEEE Transactions on Signal Processing, 2006, 54(1): 146–160. doi: 10.1109/TSP.2005.861054 [66] OMIDVAR M N, YANG Ming, MEI Yi, et al. DG2: A faster and more accurate differential grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929–942. doi: 10.1109/TEVC.2017.2694221 [67] SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299 [68] GRANT M C. CVX Research, Inc. is here[EB/OL]. http://www.cvxr.com/cvx.r, 2012. [69] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278 [70] DU Xiaolin, AUBRY A, DE MAIO A, et al. Hidden convexity in robust waveform and receive filter bank optimization under range unambiguous clutter[J]. IEEE Signal Processing Letters, 2020, 27: 885–889. doi: 10.1109/LSP.2020.2992323 [71] CHEN Chunyang and VAIDYANATHAN P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632 [72] LIU Jun, LI Hongbin, and HIMED B. Joint optimization of transmit and receive beamforming in active arrays[J]. IEEE Signal Processing Letters, 2014, 21(1): 39–42. doi: 10.1109/LSP.2013.2289325 期刊类型引用(5)
1. 武赟,张东恒,张淦霖,谢学诚,詹丰全,陈彦. 智能反射表面辅助的WiFi呼吸感知. 雷达学报(中英文). 2025(01): 189-203 . 百度学术
2. 寇弘恺,傅友华. STAR-RIS辅助多载波通信感知一体化系统的资源优化. 系统工程与电子技术. 2024(04): 1431-1439 . 百度学术
3. 孙文,孙吉利,卢虹良. 基于非匹配滤波的SAR通信一体化技术. 中国科学院大学学报(中英文). 2024(03): 387-397 . 百度学术
4. 崔琳,王博言,薛凯,张元帮,崔赢凯. 基于自适应高斯勒让德积分的稳健波束形成算法. 探测与控制学报. 2024(06): 79-85 . 百度学术
5. 王佳欢,范平志,时巧,周正春. 一种具有多普勒容忍性的通感一体化波形设计. 雷达学报. 2023(02): 275-286 . 本站查看
其他类型引用(5)
-