智能反射面辅助雷达通信双功能系统的多载波波形优化方法

田团伟 邓浩 鲁建华 杜晓林

田团伟, 邓浩, 鲁建华, 等. 智能反射面辅助雷达通信双功能系统的多载波波形优化方法[J]. 雷达学报, 2022, 11(2): 240–254. doi: 10.12000/JR21138
引用本文: 田团伟, 邓浩, 鲁建华, 等. 智能反射面辅助雷达通信双功能系统的多载波波形优化方法[J]. 雷达学报, 2022, 11(2): 240–254. doi: 10.12000/JR21138
TIAN Tuanwei, DENG Hao, LU Jianhua, et al. Multicarrier waveform optimization method for an intelligent reflecting surface-assisted dual-function radar-communication system[J]. Journal of Radars, 2022, 11(2): 240–254. doi: 10.12000/JR21138
Citation: TIAN Tuanwei, DENG Hao, LU Jianhua, et al. Multicarrier waveform optimization method for an intelligent reflecting surface-assisted dual-function radar-communication system[J]. Journal of Radars, 2022, 11(2): 240–254. doi: 10.12000/JR21138

智能反射面辅助雷达通信双功能系统的多载波波形优化方法

DOI: 10.12000/JR21138
基金项目: 河南省自然科学基金面上项目(202300410094),河南省高等学校重点科研项目(20A510002),国家自然科学基金青年基金(61801415)
详细信息
    作者简介:

    田团伟(1988–),男,河南周口人,博士,讲师。2021年在电子科技大学信息与通信工程学院取得博士学位,现担任河南大学物理与电子学院讲师。主要研究方向为雷达通信一体化、资源管控、波束设计,目前已发表论文10余篇

    邓 浩(1982–),男,湖北恩施人,博士,副教授。2016年在西安交通大学电子与信息工程学院取得博士学位,现担任河南大学物理与电子学院副教授。主要研究方向为5G/B5G信号处理、无线物理层安全传输、通信感知一体化、嵌入式系统设计,目前已发表论文20余篇

    鲁建华(1983–),男,河北沧州人,博士生,讲师。现为电子科技大学在读博士研究生、空军航空大学航空作战勤务学院讲师。主要研究方向为电子对抗效能评估、电子战雷达通信一体化

    杜晓林(1985–),男,山东肥城人,博士,副教授。2015年在西安电子科技大学获得博士学位,现担任烟台大学计算机与控制工程学院副教授。主要研究方向为优化理论算法及其应用、波形设计、人工智能、机器学习、凸优化、协方差矩阵估计、雷达信号处理,目前已经发表论文10余篇

    通讯作者:

    邓浩 gavind@163.com

  • 责任主编:杨瑞娟 Corresponding Editor: YANG Ruijuan
  • 中图分类号: TN957

Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System

Funds: The Natural Science Foundation of Henan (202300410094), The Key Scientific Research Projects of Higher Education Institutions in Henan Province (20A510002), The National Natural Science Foundation of China (61801415)
More Information
  • 摘要: 雷达通信一体化是解决频谱资源拥挤问题的有效途径之一,而共享波形设计是同时实现雷达与通信功能的关键技术,该文旨在解决智能反射面(IRS)辅助雷达通信双功能(DRC)系统的多载波波形优化问题。首先,通过最大化传输功率、通信码字错误率(WEP)、旁瓣幅度与IRS反射系数约束下的雷达互信息(RMI),构建了双功能发射波形、IRS反射单元、雷达与通信接收波束联合优化模型。其次,提出了基于交替方向最大化(ADM)的多载波波形优化算法,通过将原非凸优化问题分解为若干低复杂度子问题并迭代优化,获得了多载波波形功率分配策略的局部最优解。最后,仿真结果表明,ADM算法能同时实现雷达与通信功能;相较于现有方法有效提升了IRS辅助DRC系统的雷达与通信性能。

     

  • 图  1  I-DRC基本框架

    Figure  1.  Basic frame of I-DRC

    图  2  I-DRC多载波波形设计的仿真场景

    Figure  2.  Simulation scenario of multi-carrier waveform design for I-DRC

    图  3  通信方位角旁瓣幅度分别为–10 dB和–20 dB的发射波束

    Figure  3.  Transmit beampatterns with sidelobe amplitudes of –10 dB and –20 dB, respectively, towards the communication direction

    图  4  通信接收波束

    Figure  4.  Receive beampattern of communication

    图  5  子载波信道状态

    Figure  5.  Channel condition of subcarrier

    图  6  I-DRC多载波波形功率分配方案(${{{P}}_{\text{t}}}{\text{ = 12}}\;{\text{kW}}$)

    Figure  6.  Power allocation scheme of multi-carrier waveform for I-DRC (${{{P}}_{\text{t}}}{\text{ = 12}}\;{\text{kW}}$)

    图  7  不同WEP要求下RMI随着发射总功率变化曲线图

    Figure  7.  Curve of relationship between RMI and total transmit power under different WEP requirements

    图  8  ADM, ADSRP, ASK-IE和QAM-IE算法RMI性能比较

    Figure  8.  RMI Performance comparison for ADM, ADSRP, ASK-IE and QAM-IE algorithms

    图  9  WEP随着信噪比变化曲线图($ L' = 4 $)

    Figure  9.  Curve of relationship between WEP and SNR ($ L' = 4 $)

    表  1  基于ADM的多载波波形优化算法

    Table  1.   ADM based multicarrier waveform optimization method

     1 输入:发射和接收阵元数$ {N_{\text{T}}} $和$ {N_{\text{R}}} $;IRS阵元数$ M $;方位角$ {\theta _0} $, $ {\theta _1} $, $ {\theta _{{\text{ris}}}} $, $ {\theta _{{\text{rist}}}} $, $ \varphi $, $ \tilde \varphi $, $ {\phi _0} $和$ {\phi _1} $;子载波数$ K $;
         传输总功率${ {{P} }_{\text{t} } }$;信道系数方差$ \sigma _{{\text{r}},k}^2 $, $ \sigma _{{\text{c}},k}^2 $, $ \sigma _{0,k}^2 $, $ \sigma _{1,k}^2 $, $ \sigma _{{\text{ris}},k}^2 $, $ \sigma _{{\text{rist}},k}^2 $, $ \sigma _{\beta ,0,k}^2 $, $ \sigma _{\beta ,1,k}^2 $和$ \sigma _{\gamma ,k}^2 $;旁瓣幅度数$ L $;停止准则$ \varepsilon $。
     2 输出:双功能发射波束形成矢量$ {{\boldsymbol u}_k} $;接收波束形成矢量$ {{\boldsymbol w}_k} $;RMI。
     3 初始化:$ {\boldsymbol u}_k^0 $, $ {{\boldsymbol Q}^0} $, $ {\boldsymbol v}_k^0 $和$ {\boldsymbol w}_k^0 $;迭代索引$ j $。
     4 求解松弛优化问题(16)获得$ {\boldsymbol u}_k^j $;
     5 求解半正定凸问题(25)获得$ {{\boldsymbol Q}^j} $;
     6 根据式(29)获得$ {\boldsymbol v}_k^j $;
     7 根据式(32)获得$ {\boldsymbol w}_k^j $;
     8 判断式(10)的收敛条件是否满足;若满足,停止迭代;反之,$ j = j + 1 $,并转向步骤4。
    下载: 导出CSV
  • [1] 刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113
    [2] CAA. Public sector spectrum release programme: Radar planning and spectrum sharing in the 2.7~2.9 GHz bands[EB/OL]. https://www.caa.co.uk/commercial-industry/airspace/communication-navigation-and-surveillance/spectrum.
    [3] TAVIK G C, HILTERBRICK C L, EVINS J B, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1009–1020. doi: 10.1109/TMTT.2005.843485
    [4] MAZUMDER S, DURAND J P, MEYER S L, et al. High-band digital preprocessor (HBDP) for the AMRFC test-bed[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(3): 1065–1071. doi: 10.1109/TMTT.2005.843511
    [5] PAUL B, CHIRIYATH A R, and BLISS D W. Survey of RF communications and sensing convergence research[J]. IEEE Access, 2017, 5: 252–270. doi: 10.1109/ACCESS.2016.2639038
    [6] OZKAPTAN C D, EKICI E, and ALTINTAS O. Adaptive waveform design for communication-enabled automotive radars[J]. IEEE Transactions on Wireless Communications, 2021. doi: 10.1109/TWC.2021.3125924.
    [7] MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832
    [8] QUAN Siji, QIAN Weiping, GUO Junhai, et al. Radar-communication integration: An overview[C]. The 7th IEEE/International Conference on Advanced Infocomm Technology (ICAIT), Fuzhou, China, 2014: 98–103. doi: 10.1109/ICAIT.2014.7019537.
    [9] 刘永军. 基于OFDM的雷达通信一体化设计方法研究[D]. [博士论文], 西安电子科技大学, 2019.

    LIU Yongjun. Study on integrated radar and communications design method based on OFDM[D]. [Ph. D. dissertation], Xidian University, 2019.
    [10] CAGER R, LAFLAME D, and PARODE L. Orbiter Ku-band integrated radar and communications subsystem[J]. IEEE Transactions on Communications, 1978, 26(11): 1604–1619. doi: 10.1109/TCOM.1978.1094004
    [11] HAN Liang and WU Ke. 24-GHz integrated radio and radar system capable of time-agile wireless communication and sensing[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 619–631. doi: 10.1109/TMTT.2011.2179552
    [12] HAN Liang and WU Ke. Multifunctional transceiver for future intelligent transportation systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(7): 1879–1892. doi: 10.1109/TMTT.2011.2138156
    [13] MOGHADDASI J and WU Ke. Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform[J]. IEEE Access, 2016, 4: 818–838. doi: 10.1109/ACCESS.2016.2530979
    [14] MISHRA A K and INGGS M. FOPEN capabilities of commensal radars based on whitespace communication systems[C]. 2014 IEEE International Conference on Electronics, Computing and Communication Technologies, Bangalore, India, 2014: 1–5. doi: 10.1109/CONECCT.2014.6740313.
    [15] WINKLER V and DETLEFSEN J. Automotive 24 GHz pulse radar extended by a DQPSK communication channel[C]. The 4th European Radar Conference, Munich, Germany, 2007: 138–141. doi: 10.1109/EURAD.2007.4404956.
    [16] SURENDER S C, NARAYANAN R M, and DAS C R. Performance analysis of communications & radar coexistence in a covert UWB OSA system[C]. 2010 IEEE Global Telecommunications Conference, Miami, USA, 2010: 1–5. doi: 10.1109/GLOCOM.2010.5683837.
    [17] 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567

    LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multicarrier frequency modulation chirp signal[J]. Journal of Electronics &Information Technology, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567
    [18] TAKASE H and SHINRIKI M. A dual-use radar and communication system with complete complementary codes[C]. 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–4. doi: 10.1109/IRS.2014.6869268.
    [19] LI Xiaobai, YANG Ruijuan, ZHANG Zunquan, et al. Research of constructing method of complete complementary sequence in integrated radar and communication[C]. 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 2012: 1729–1732. doi: 10.1109/ICoSP.2012.6491914.
    [20] XU Shaojian, CHEN Yan, and ZHANG Peng. Integrated radar and communication based on DS-UWB[C]. 2006 3rd International Conference on Ultrawideband and Ultrashort Impulse Signals, Sevastopol, Ukraine, 2006: 142–144. doi: 10.1109/UWBUS.2006.307182.
    [21] GARMATYUK D, SCHUERGER J, MORTON Y T, et al. Feasibility study of a multi-carrier dual-use imaging radar and communication system[C]. The 37th European Microwave Conference, Munich, Germany, 2007: 1473–1476. doi: 10.1109/EUMC.2007.4405484.
    [22] RUGGIANO M and VAN GENDEREN P. Wideband ambiguity function and optimized coded radar signals[C]. The 4th European Radar Conference, Munich, Germany, 2007: 142–145. doi: 10.1109/EURAD.2007.4404957.
    [23] 刘少华, 黄志星. 基于扩频的雷达通信一体化信号的设计[J]. 雷达科学与技术, 2014, 12(1): 69–75. doi: 10.3969/j.issn.1672-2337.2014.01.012

    LIU Shaohua and HUANG Zhixing. Design of integrated radar-communication signal based on spread spectrum[J]. Radar Science and Technology, 2014, 12(1): 69–75. doi: 10.3969/j.issn.1672-2337.2014.01.012
    [24] 赵玉振, 陈龙永, 张福博, 等. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报, 2021, 10(3): 453–466. doi: 10.12000/JR21028

    ZHAO Yuzhen, CHEN Longyong, ZHANG Fubo, et al. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453–466. doi: 10.12000/JR21028
    [25] GARMATYUK D, SCHUERGER J, KAUFFMAN K, et al. Wideband OFDM system for radar and communications[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–6. doi: 10.1109/RADAR.2009.4977024.
    [26] LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems[J]. Signal Processing, 2017, 141: 331–342. doi: 10.1016/j.sigpro.2017.06.026
    [27] SIT Y L, REICHARDT L, STURM C, et al. Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario[C]. 2011 IEEE Radar Conference, Kansas City, USA, 2011: 718–723. doi: 10.1109/RADAR.2011.5960632.
    [28] 李自琦, 梅进杰, 胡登鹏, 等. 基于分组格雷编码的OFDM雷达通信一体化系统峰均功率比抑制[J]. 雷达学报, 2014, 3(5): 548–555. doi: 10.3724/SP.J.1300.2014.14059

    LI Ziqi, MEI Jinjie, HU Dengpeng, et al. Peak-to-Average power ratio reduction for integration of radar and communication systems based on OFDM signals with block Golay coding[J]. Journal of Radars, 2014, 3(5): 548–555. doi: 10.3724/SP.J.1300.2014.14059
    [29] NOWAK M, WICKS M, ZHANG Zhiping, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236
    [30] GAGLIONE D, CLEMENTE C, ILIOUDIS C V, et al. Waveform design for communicating radar systems using fractional Fourier transform[J]. Digital Signal Processing, 2018, 80: 57–69. doi: 10.1016/j.dsp.2018.05.002
    [31] LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648
    [32] EDARA I P, HASSANIEN A, AMIN M G, et al. Ambiguity function analysis for dual-function radar communications using PSK signaling[C]. 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2018: 900–904. doi: 10.1109/ACSSC.2018.8645328.
    [33] HASSANIEN A, AMIN M G, ZHANG Y D, et al. A dual function radar-communications system using sidelobe control and waveform diversity[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 1260–1263. doi: 10.1109/RADAR.2015.7131188.
    [34] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
    [35] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications using phase-rotational invariance[C]. 2015 23rd European Signal Processing Conference, Nice, France, 2015: 1346–1350. doi: 10.1109/EUSIPCO.2015.7362603.
    [36] AHMED A, ZHANG Y D, and GU Yujie. Dual-function radar-communications using QAM-based sidelobe modulation[J]. Digital Signal Processing, 2018, 82: 166–174. doi: 10.1016/j.dsp.2018.06.018
    [37] TIAN Tuanwei, LI Guchong, and ZHOU Tao. Power distribution for an OFDM-based dual-function Radar-Communication sensor[J]. IEEE Sensors Letters, 2020, 4(11): 5501504. doi: 10.1109/LSENS.2020.3033044
    [38] TIAN Tuanwei, ZHANG Tianxian, KONG Lingjiang, et al. Transmit/receive beamforming for MIMO-OFDM based dual-function radar and communication[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4693–4708. doi: 10.1109/TVT.2021.3072094
    [39] WU Qingqing and ZHANG Rui. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106–112. doi: 10.1109/MCOM.001.1900107
    [40] DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211
    [41] HU Jingzhi, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface based rf sensing: Design, optimization, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2700–2716. doi: 10.1109/JSAC.2020.3007041
    [42] HUANG Kewen and WANG Huiming. Passive beamforming for IRS aided wireless networks[J]. IEEE Wireless Communications Letters, 2020, 9(12): 2035–2039. doi: 10.1109/LWC.2020.3011596
    [43] DE JESUS TORRES A, SANGUINETTI L, and BJÖRNSON E. Electromagnetic interference in RIS-aided communications[J]. IEEE Wireless Communications Letters, in press, 2021. doi: 10.1109/LWC.2021.3124584.
    [44] WANG Jun, LIANG Yingchang, HAN Shiying, et al. Robust beamforming and phase shift design for IRS-enhanced multi-user MISO downlink communication[C]. 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6. doi: 10.1109/ICC40277.2020.9148947.
    [45] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [46] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044
    [47] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2683–2699. doi: 10.1109/JSAC.2020.3007055
    [48] TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887
    [49] WANG Fangzhou, LI Hongbin, and FANG Jun. Joint active and passive beamforming for IRS-assisted radar[J]. IEEE Signal Processing Letters, 2021.
    [50] LU Wei, LIN Qiang, SONG Ningzhe, et al. Target detection in intelligent reflecting surface aided distributed MIMO radar systems[J]. IEEE Sensors Letters, 2021, 5(3): 7000804. doi: 10.1109/LSENS.2021.3061534
    [51] AUBRY A, DE MAIO A, and ROSAMILIA M. Reconfigurable intelligent surfaces for N-LOS radar surveillance[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10735–10749. doi: 10.1109/TVT.2021.3102315
    [52] 施宏宇, 李国强, 刘康, 等. 基于反射型超表面的太赫兹偏折涡旋波束生成[J]. 雷达学报, 2021, 10(5): 785–793. doi: 10.12000/JR21070

    SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070
    [53] BUZZI S, GROSSI E, LOPS M, et al. Foundations of MIMO radar detection aided by reconfigurable intelligent surfaces[EB/OL]. https://arxiv.org/abs/2105.09250, 2021.
    [54] WANG Xinyi, FEI Zesong, GUO Jing, et al. RIS-assisted spectrum sharing between MIMO radar and MU-MISO communication systems[J]. IEEE Wireless Communications Letters, 2021, 10(3): 594–598. doi: 10.1109/LWC.2020.3039369
    [55] WANG Xinyi, FEI Zesong, ZHENG Zhong, et al. Joint Waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5131–5136. doi: 10.1109/TVT.2021.3075497
    [56] BELL M R. Information theory and radar waveform design[J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578–1597. doi: 10.1109/18.259642
    [57] AN Lin, LI Ming, ZHANG Peng, et al. Multicontextual mutual information data for SAR image change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1863–1867. doi: 10.1109/LGRS.2015.2432071
    [58] ZHANG Haowei, ZONG Binfeng, and XIE Junwei. Power and bandwidth allocation for multi-target tracking in collocated MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9795–9806. doi: 10.1109/TVT.2020.3002899
    [59] 王璐璐. 基于信息论的自适应波形设计[D]. [博士论文], 国防科学技术大学, 2015. doi: 10.7666/d.D01107893.

    WANG Lulu. Adaptive waveform design based on information theory[D]. [Ph. D. dissertation], National University of Defense Technology, 2015. doi: 10.7666/d.D01107893.
    [60] 张钰. 基于最大互信息准则的认知雷达波形优化算法研究[D]. [硕士论文], 西安电子科技大学, 2012. doi: 10.7666/d.d216380.

    ZHANG Yu. Study on the waveform design algorithm for cognitive radar based on maximum mutual information rule[D]. [Master dissertation], Xidian University, 2012. doi: 10.7666/d.d216380.
    [61] TANG Bo and LI Jian. Spectrally constrained MIMO radar waveform design based on mutual information[J]. IEEE Transactions on Signal Processing, 2019, 67(3): 821–834. doi: 10.1109/TSP.2018.2887186
    [62] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [63] TIAN Tuanwei, ZHANG Tianxian, LI Guchong, et al. Mutual information-based power allocation and co-design for multicarrier radar and communication systems in coexistence[J]. IEEE Access, 2019, 7: 159300–159312. doi: 10.1109/ACCESS.2019.2950890
    [64] TIAN Tuanwei, ZHANG Tianxian, KONG Lingjiang, et al. Mutual information based partial band coexistence for joint radar and communication system[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–5. doi: 10.1109/RADAR.2019.8835671.
    [65] TKACENKO A and VAIDYANATHAN P P. Iterative greedy algorithm for solving the FIR paraunitary approximation problem[J]. IEEE Transactions on Signal Processing, 2006, 54(1): 146–160. doi: 10.1109/TSP.2005.861054
    [66] OMIDVAR M N, YANG Ming, MEI Yi, et al. DG2: A faster and more accurate differential grouping for large-scale black-box optimization[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(6): 929–942. doi: 10.1109/TEVC.2017.2694221
    [67] SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    [68] GRANT M C. CVX Research, Inc. is here[EB/OL]. http://www.cvxr.com/cvx.r, 2012.
    [69] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278
    [70] DU Xiaolin, AUBRY A, DE MAIO A, et al. Hidden convexity in robust waveform and receive filter bank optimization under range unambiguous clutter[J]. IEEE Signal Processing Letters, 2020, 27: 885–889. doi: 10.1109/LSP.2020.2992323
    [71] CHEN Chunyang and VAIDYANATHAN P. MIMO radar waveform optimization with prior information of the extended target and clutter[J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3533–3544. doi: 10.1109/TSP.2009.2021632
    [72] LIU Jun, LI Hongbin, and HIMED B. Joint optimization of transmit and receive beamforming in active arrays[J]. IEEE Signal Processing Letters, 2014, 21(1): 39–42. doi: 10.1109/LSP.2013.2289325
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2255
  • HTML全文浏览量:  1624
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-26
  • 修回日期:  2021-12-30
  • 网络出版日期:  2022-02-14
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回