Loading [MathJax]/jax/output/SVG/jax.js

基于成像坐标系优化的中轨星载SAR成像方法

李航 刘文康 孙光才 邢孟道 李光伟 费晓燕

周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080
引用本文: 李航, 刘文康, 孙光才, 等. 基于成像坐标系优化的中轨星载SAR成像方法[J]. 雷达学报, 2020, 9(5): 856–864. doi: 10.12000/JR20098
ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080
Citation: LI Hang, LIU Wenkang, SUN Guangcai, et al. MEO SAR imaging based on imaging coordinate system optimization[J]. Journal of Radars, 2020, 9(5): 856–864. doi: 10.12000/JR20098

基于成像坐标系优化的中轨星载SAR成像方法

DOI: 10.12000/JR20098
基金项目: 国家自然科学基金重点项目(61931025),高等学校学科创新引智计划资助(B18039)
详细信息
    作者简介:

    李 航(1996–),女,山西吕梁人,西安电子科技大学电子工程学院博士生。主要研究方向为星载合成孔径雷达成像、海洋微波遥感观测等。E-mail: hli_xidian@163.com

    刘文康(1994–),男,河南周口人,西安电子科技大学电子工程学院博士生。主要研究方向为中轨星载合成孔径雷达成像、高轨星载合成孔径雷达成像、动目标成像处理等。E-mail: wkliu@stu.xidian.edu.cn

    孙光才(1984–),男,湖北孝感人,博士,华山特聘教授。2012年在西安电子科技大学电子工程学院获得博士学位,现担任西安电子科技大学电子工程学院副教授。主要研究方向为新体制雷达成像、运动目标检测成像。E-mail: rsandsgc@126.com

    邢孟道(1975–),男,浙江嵊州人,博士,教授,2002年在西安电子科技大学电子工程学院获得博士学位,现担任西安电子科技大学电子工程学院教授。研究方向为雷达探测、雷达成像、运动目标检测成像。E-mail: xmd@xidian.edu.cn

    通讯作者:

    刘文康 wkliu@stu.xidian.edu.cn

    孙光才 rsandsgc@126.com

  • 责任主编:李宁 Corresponding Editor: LI Ning
  • 中图分类号: TN957.52

MEO SAR Imaging Based on Imaging Coordinate System Optimization

Funds: The State Key Program of National Natural Science China (61931025), The 111 Project (B18039)
More Information
  • 摘要: 在中轨合成孔径雷达(MEO SAR)成像中,大弯曲轨道以及长合成孔径时间会导致信号产生严重的两维空变。常规方法分别在距离和方位两个方向处理空变,计算复杂度通常比较高。该文研究了大场景中的多普勒调频率的空间分布,并提出将数据变换到一种非正交非线性成像坐标系中进行成像,使中轨SAR信号在该坐标系中满足方位平移不变性,由于不需要对方位空变做额外处理,该成像方法的运算量显著降低。最后通过多普勒线性化处理可以进一步补偿高阶多普勒参数的影响,以实现场景边缘点更精确的聚焦,并校正由非线性坐标系变换引入的方位聚焦位置偏移。最后,在条带模式下仿真2 m分辨率的数据,可以验证所提出算法的有效性。

     

  • 极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)具有全天时和几乎全天候的工作能力,通过收发极化状态正交的电磁波以获取目标的全极化散射信息[1]。地物分类是农作物生长监控、农村与城市用地普查、环境监测等应用领域的共性基础问题,也是极化SAR图像理解与解译的重要应用方向。高精度的地物分类结果能够为上述应用领域提供可靠的信息支撑。

    通常,提高极化SAR地物分类精度主要有两种途径[2]。第1种途径专注于极化特征的挖掘与优选,通过精细化的极化散射机理建模与解译,从全极化信息中提取出对不同地物类别具有更强区分度的特征。常用的极化散射机理解译方法有基于特征值分解的方法和基于模型分解的方法。基于这些极化目标分解方法所得到的极化特征参数经常被用于极化SAR地物分类,例如Cloude-Pottier分解所得的极化熵/极化平均角/极化反熵(H/ α/A)参数[3],Freeman-Durden分解[4]、Yamaguchi分解[5]和近年来提出的精细化极化目标分解[6]所得的各散射机理的散射能量参数(如奇次散射、偶次散射、体散射、螺旋散射等)[7]。第2种途径则从分类器入手,使用性能更好的分类器,以对现有的极化特征进行充分利用。常用的分类器包括C均值分类器、Wishart分类器、支持向量机(Support Vector Machine, SVM)分类器、随机森林分类器、神经网络分类器以及近来年在诸多领域取得成功应用的以卷积神经网络为代表的深度学习分类方法等[811]。当然,对特征和分类器同时进行优化和优选也是提高极化SAR地物分类精度的有效途径。

    在传统基于特征的极化SAR地物分类中,具有旋转不变特性的极化特征参数得到了广泛应用。例如,基于H/ α/A和总散射能量SPAN的极化SAR地物分类就是一种常用的分类方法。然而,目标的极化响应与目标和SAR的相对几何关系密切相关。同一目标在不同方位取向下,其后向散射可以是显著不同的。同时,不同目标在某些特定方位取向下,其后向散射又是十分相似的。例如,具有不同方位取向的建筑物与森林等植被就是极化SAR图像解译的难点。这是诸多传统极化目标分解方法存在散射机理解译模糊的重要原因之一,同时也限制了基于旋转不变极化特征参数的传统分类方法所得精度的进一步提升。为避免这种解译模糊,一种思路是构建更精细化的目标散射模型和精细化的极化目标分解方法。而另一种思路则是挖掘利用目标方位取向与其后向散射机理之间的隐含关系。文献[12]提出的统一的极化矩阵旋转理论就是一种代表性的方法。该方法提出了在绕雷达视线的旋转域中理解目标散射特性的新思路,并导出了一系列旋转域极化特征。部分旋转域极化特征参数已经在农作物辨识[13]、目标对比增强[12]、人造目标提取[14]等领域获得了成功应用。

    由于这些旋转域极化特征包含有目标在旋转域中隐含的极化散射信息,且与其方位取向具有一定关系。若将它们与传统的旋转不变极化特征参数于H/ α/A/SPAN联合作为地物分类特征集,则从极化特征挖掘的角度来看,两类不同的极化特征对于不同地物类别的区分能力势必会形成一定程度的互补,进而使分类精度得到进一步提升。基于这一思路,本文提出了一种结合旋转域极化特征与旋转不变特征H/ α/A/SPAN的极化SAR地物分类方法。具体即基于不同地物类别样本集类间距最大的特征优选准则,以部分优选的旋转域极化特征参数与H/ α/A/SPAN联合作为地物分类所用特征,并选用性能较为稳定的SVM[15]作为分类器进行分类处理。由于该分类方法额外使用了目标在方位取向方面的隐含信息,故相较于仅使用旋转不变特征H/ α/A/SPAN作为输入的SVM分类器[10],其能够达到更优的分类性能表现。

    本文第2节简要介绍了统一的极化矩阵旋转理论及其所导出的旋转域极化特征参数;第3节提出结合旋转域极化特征的极化SAR地物分类方法;第4节基于AIRSAR和多时相UAVSAR实测数据开展了地物分类对比实验及分析;第5节总结本文方法并对后续研究工作进行展望。

    极化SAR获得的目标全极化信息可以通过极化相干矩阵T表示。满足互易性原理时,极化相干矩阵T可以表示为:

    T=kPkHP=[T11T12T13T21T22T23T31T32T33] (1)

    其中, kP=12[SHH+SVVSHHSVV2SHV]T为Pauli散射矢量。 SHV为以垂直极化天线发射并以水平极化天线接收条件下的散射系数, kP中其它元素可类似定义。  表示集合平均。 Tij则表示极化相干矩阵 T中第i行第j列所对应的元素。

    将极化相干矩阵 T绕雷达视线进行旋转处理,则可得到旋转域中极化相干矩阵的表达式为:

    T(θ)=kP(θ)kHP(θ)=R3(θ)TRH3(θ) (2)

    其中,旋转矩阵为:

    R3(θ)=[1000cos2θsin2θ0sin2θcos2θ] (3)

    在旋转域中极化相干矩阵 T(θ)的每个元素经过相应的数学变换即可被统一地由一个正弦函数进行表征[12]

    f(θ)=Asin[ω(θ+θ0)]+B (4)

    其中,A为振荡幅度,B为振荡中心, ω为角频率, θ0为初始角度。文献[12]将这4类极化特征参数 {A,B,ω,θ0}称为振荡参数集,其完整表征极化相干矩阵的各元素在旋转域中的特性。这样就可以导出一系列旋转域极化特征参数,如表1所示。其中, Angle{a}表示复数a的相位,相应取值范围为 [π,π]

    表  1  旋转域极化特征参数[12]
    Table  1.  Polarimetric feature parameters derived from rotation domain[12]
    散射矩阵元素项 A= B ω θ0=1ωAngle{}
    Re[T12(θ)] Re2[T12]+Re2[T13] 0 2 Re[T13]+jRe[T12]
    Re[T13(θ)] Re2[T12]+Re2[T13] 0 2 Re[T12]+jRe[T13]
    Im[T12(θ)] Im2[T12]+Im2[T13] 0 2 Im[T13]+jIm[T12]
    Im[T13(θ)] Im2[T12]+Im2[T13] 0 2 Im[T12]+jIm[T13]
    Re[T23(θ)] 14(T33T22)2+Re2[T23] 0 4 12(T33T22)+jRe[T23]
    T22(θ) 14(T33T22)2+Re2[T23] 12(T22+T33) 4 Re[T23]+j12(T22T33)
    T33(θ) 14(T33T22)2+Re2[T23] 12(T22+T33) 4 Re[T23]+j12(T33T22)
    |T12(θ)|2 Re2[T12T13]+14(|T13|2|T12|2)2 12(|T12|2+|T13|2) 4 Re[T12T13]+j12(|T12|2|T13|2)
    |T13(θ)|2 Re2[T12T13]+14(|T13|2|T12|2)2 12(|T12|2+|T13|2) 4 Re[T12T13]+j12(|T13|2|T12|2)
    |T23(θ)|2 14{14(T33T22)2+Re2[T23]}2 12{14(T33T22)2+Re2[T23]}+Im2[T23] 8 12(T33T22)Re[T23]+j12[Re2[T23]14(T33T22)2]
    下载: 导出CSV 
    | 显示表格

    基于上述振荡参数集,文献[12]还导出了一系列的极化角参数集,如极化零角参数、极化最大化角参数以及极化最小化角参数等。其中,极化零角参数的定义为在绕雷达视线的旋转域中使极化相干矩阵某元素取值为零的旋转角,即:

    f(θ)=Asin[ω(θnull+θ0)]+B=0θnull=θ0 (5)

    其中, θnull即极化零角参数。由于表1中相互独立的5个初始角度 θ0分别为 θ0_Re[T12(θ)], θ0_Im[T12(θ)], θ0_Re[T23(θ)], θ0_|T12(θ)|2θ0_|T23(θ)|2,故相应的极化零角参数有 θnull_Re[T12(θ)], θnull_Im[T12(θ)], θnull_Re[T23(θ)], θnull_|T12(θ)|2θnull_|T23(θ)|2。由文献[12]可知,各初始角度与其相应极化零角参数所包含的极化信息是相互等价的,且极化零角参数具有相对明确的物理意义,故在本文的后续部分均以极化零角参数代替相应的初始角度。

    文献[12]使用极化零角参数 θnull_Re[T12(θ)]θnull_Im[T12(θ)]的组合能够成功辨识7类不同农作物,初步证实了极化零角参数集对于不同地物类别具有较好的区分能力。在此基础上,本文挖掘利用旋转域极化特征所蕴含目标在旋转域中的隐含信息,并将其应用于极化SAR地物分类。

    在此之前,需要基于地物分类的应用背景对众多的旋转域极化特征进行优选处理。在文献[12]所导出的一系列旋转域极化特征之中,以不同地物类别样本集相互之间的“类间距最大化”为准则,进行相应的旋转域极化特征优选。具体步骤为:首先对各旋转域极化特征参数进行归一化处理;然后将不同的地物类别两两组合形成若干的地物类别对;接着针对各地物类别对,以其中两地物类别之间的类间距为标准,优选出使其取值达到最大的旋转域极化特征,则每个地物类别对均对应于一个优选的旋转域极化特征;最后,将各地物类别对的优选结果进行“取并集”处理,进而得到最终的优选结果。

    文献[12]所导出相互独立的旋转域极化特征共有12个,分别为 θnull_Re[T12(θ)], θnull_Im[T12(θ)], θnull_Re[T23(θ)], θnull_|T12(θ)|2, θnull_|T23(θ)|2, A_Re[T12(θ)], A_Im[T12(θ)], A_T12(θ), A_ T23(θ), B_T12(θ), B_T33(θ), B_T23(θ)。针对之后实验部分所使用的AIRSAR数据(15类地物,两两组合形成105个地物类别对;其它说明见4.1节)以及多时相UAVSAR数据(7类地物,两两组合形成21个地物类别对;4个数据获取日期;其它说明见4.2节),上述特征优选流程所得结果如表2所示。

    表  2  针对不同极化SAR实测数据的特征优选结果
    Table  2.  Selected features for different PolSAR data
    实测数据 优选所得旋转域极化特征(相应地物类别对的个数)
    AIRSAR θnull_Re[T12(θ)](18), θnull_Im[T12(θ)](15), θnull_Re[T23(θ)](71), B_T33(θ)(1)
    UAVSAR 6月17日 θnull_Re[T12(θ)](5), θnull_Im[T12(θ)](12), θnull_Re[T23(θ)](4)
    6月22日 θnull_Re[T12(θ)](5), θnull_Im[T12(θ)](14), θnull_Re[T23(θ)](2)
    7月03日 θnull_Im[T12(θ)](3), θnull_Re[T23(θ)](18)
    7月17日 θnull_Re[T12(θ)](7), θnull_Im[T12(θ)](5), θnull_Re[T23(θ)](9)
    下载: 导出CSV 
    | 显示表格

    综合考虑表2中的优选结果,并在追求较高地物分类精度的同时,将两组实测数据优选得到的旋转域极化特征进行统一,故本文优选部分的最终结果为3个极化零角参数,即 θnull_Re[T12(θ)], θnull_Im[T12(θ)]θnull_Re[T23(θ)]

    为了将目标在旋转域中的隐含信息充分利用在极化SAR地物分类中,同时又发挥传统的旋转不变极化特征参数H/A/ α/SPAN在极化散射机理解译方面的优点,本文提出了一种结合旋转域极化特征的极化SAR地物分类方法,其流程图如图1所示,相应的具体操作如下:

    图  1  本文方法具体流程图
    Figure  1.  Flowchart of proposed method

    (1) 在进行Cloude-Pottier分解之前,需要对极化SAR数据进行相干斑滤波处理。本文采用新近提出的一种基于矩阵相似性检验的SimiTest自适应相干斑滤波方法[16]对极化SAR数据进行滤波预处理。

    (2) 基于滤波后的极化相干矩阵,计算总散射能量SPAN。

    (3) 同样地,基于滤波后的极化相干矩阵,进行Cloude-Pottier分解,得到极化特征量H/ α/A

    (4) 同时,将滤波后的极化相干矩阵绕雷达视线旋转,计算上述优选部分所得的3个极化零角参数。

    (5) 对上述7个极化特征参数分别进行归一化处理,以作为地物分类特征集输入至SVM分类器。

    (6) 通过SVM相应的训练与测试过程,实现对不同地物类别的分类处理。

    为了验证新极化特征(即3个旋转域极化零角参数)的引入对于传统地物分类方法性能的提升作用,在对极化相干矩阵中全部极化信息进行利用的前提之下,将本文方法与仅使用旋转不变特征H/A/ α/SPAN作为SVM分类器输入的传统方法进行对比。首先使用AIRSAR数据15类地物的分类验证本文方法的分类性能,再使用多时相UAVSAR数据7类地物的分类进一步验证本文方法对多时相数据的稳健性。在对此两组数据分别进行SimiTest相干斑滤波[16]时,所用滑窗大小均为15×15。对SVM分类器,各类地物样本的一半用于训练,另一半用于测试。

    本文首先使用NASA/JPL AIRSAR系统在荷兰Flevoland地区所获取的L波段全极化SAR数据进行地物分类实验。该数据方位向分辨率为12.1 m,距离向分辨率为6.6 m,所用区域大小为736×1010。SimiTest相干斑滤波后的Pauli RGB图如图2(a)所示。该区域的真值图如图2(b)所示,其中主要包含茎豆、豌豆、森林、苜蓿、小麦1、甜菜、土豆、裸地、草地、油菜籽、大麦、小麦2、小麦3、水域以及建筑物等15类地物。

    图  2  AIRSAR数据
    Figure  2.  AIRSAR data

    使用传统方法和本文方法分别对滤波后的数据进行分类处理,所得结果如图3所示。

    图  3  AIRSAR数据的分类结果
    Figure  3.  Classification results of AIRSAR data

    两种方法对AIRSAR数据15类地物分类处理所得精度如表3所示。通过比较可知,本文方法得到的总体分类精度为92.3%,优于传统方法91.1%的分类精度。且本文方法对草地77.3%的分类精度相较于传统方法的59.3%提升了18个百分点。另外,由于SVM分类器所用分类策略以总体分类精度的最大化为目标,无法保证单一地物类别的分类精度均达到最优。例如,本文方法在苜蓿、小麦1、裸地、大麦以及建筑物等5种地物类别区域所得分类精度均不及传统方法。针对其中分类精度差距最大(约8.3%)的裸地,由于其相应区域的主要散射机制为“面散射”,不同方位取向对其后向散射的影响较小,使用传统的旋转不变极化特征已经能较好地对其进行区分与辨识,本文方法额外引入的3个旋转域极化零角参数可能造成了分类信息的冗余,进而导致所得分类精度的较大幅度下降。

    表  3  两种方法所得AIRSAR数据15类地物及总体的分类精度(%)
    Table  3.  Classification accuracy of different terrains in AIRSAR data using two methods (%)
    地物 传统方法 本文方法
    茎豆 97.2 98.0
    豌豆 93.7 96.9
    森林 92.6 93.7
    苜蓿 96.8 96.6
    小麦1 88.7 85.9
    甜菜 93.8 93.8
    土豆 92.6 93.3
    裸地 95.5 87.2
    草地 59.3 77.3
    油菜籽 83.9 88.0
    大麦 92.6 91.5
    小麦2 89.2 89.4
    小麦3 94.3 95.9
    水域 98.0 98.5
    建筑物 84.9 83.2
    总体精度 91.1 92.3
    下载: 导出CSV 
    | 显示表格

    本文使用NASA/JPL UAVSAR系统在加拿大Manitoba地区所获取的多时相L波段全极化SAR数据进行地物分类实验。该数据方位向分辨率为7 m,距离向分辨率为5 m,所用区域大小为1325×1011。多时相极化SAR数据分别获取于6月17日、6月22日、7月3日以及7月17日。SimiTest相干斑滤波处理之后多时相极化SAR数据对应的Pauli RGB图如图4所示。该区域的主要地物类型是以谷物和油种产品为代表的混合型牧场农作物。相应的真值图如图5所示,其中主要包含阔叶林、草料、大豆、玉米、小麦、油菜籽以及燕麦等7类地物。

    图  4  多时相UAVSAR数据滤波后Pauli RGB图
    Figure  4.  Filtered Pauli RGB images of multi-temporal UAVSAR data
    图  5  所用区域的真值图
    Figure  5.  Gound truth of the multi-temporal data

    使用传统方法和本文方法分别对滤波后的多时相极化SAR数据进行相互独立的分类处理,所得结果分别如图6图7所示。

    图  6  传统方法对多时相UAVSAR数据分类结果
    Figure  6.  Classification results of multi-temporal UAVSAR data using conventional method
    图  7  本文方法对多时相UAVSAR数据分类结果
    Figure  7.  Classification results of multi-temporal UAVSAR data using proposed method

    图6(c)图7(c)所示,基于7月3日获取的数据,传统方法将红色圆框内小麦与燕麦的绝大部分错分为了大豆,而本文方法在该区域的分类性能相较于前者有显著提升。又如图6(d)图7(d)所示,基于7月17日获取的数据,传统方法将白色圆框内小麦的绝大部分错分为了大豆,而本文方法在该区域的分类精度相较于前者也有较大提升。

    两种方法对多时相UAVSAR数据7类地物分类处理所得精度如表4所示。通过比较可知,对不同日期获取的数据,本文方法所得各类地物及总体的分类精度均优于或相当于传统方法。其中,对6月17日、6月22日、7月3日以及7月17日4个不同日期所获取的数据,本文方法得到的总体分类精度分别为94.98%, 95.12%, 95.99%以及96.78%,而传统方法所得总体分类精度则波动于80.87%至90.75%之间,出现约10%的起伏。具体就小麦和燕麦而言,本文方法得到的分类精度均分别保持在94%和92%以上,而传统方法所得相应分类精度则分别出现了约30%和23%的波动起伏。另外,本文方法95.72%的平均总体分类精度相较于传统方法的87.80%提升了约8个百分点。故本文方法较好的分类性能对于同一系统的多时相数据更具稳健性。

    表  4  两种方法所得多时相UAVSAR数据7类地物及总体的分类精度 (%)
    Table  4.  The classification accuracy of different terrains in multi-temporal UAVSAR data using two methods (%)
    日期 方法 阔叶林 草料 大豆 玉米 小麦 油菜籽 燕麦 总体
    6月17日 传统 98.47 62.24 92.64 96.12 93.63 91.70 86.37 90.19
    本文 98.49 81.65 96.76 98.19 96.08 92.25 96.32 94.98
    6月22日 传统 98.05 61.38 94.14 97.30 97.89 93.82 77.29 90.75
    本文 97.96 72.60 96.86 98.18 97.07 96.84 95.13 95.12
    7月3日 传统 97.41 54.38 90.45 98.89 68.75 98.81 63.46 80.87
    本文 97.77 76.68 98.12 99.08 96.95 98.93 94.22 95.99
    7月17日 传统 96.86 64.51 97.38 99.78 84.76 92.19 82.98 89.39
    本文 97.27 93.15 99.31 99.58 94.73 99.71 92.16 96.78
    平均 传统 97.70 60.63 93.65 98.02 86.26 94.13 77.53 87.80
    本文 97.87 81.02 97.76 98.76 96.21 96.93 94.46 95.72
    下载: 导出CSV 
    | 显示表格

    另外,对于6月22日所获取数据中的阔叶林和小麦,以及7月17日所获取数据中的玉米,本文方法所得分类精度均略低于传统方法,且分类精度的差距均在1%以内。

    在上述两组相互独立的对比实验所得结果中,本文方法所得分类精度均优于传统方法。故本文方法所表现出的较好分类性能对于不同系统的数据也具有较强稳健性。

    目标方位取向对其后向散射响应的直接影响极易引起散射机理的解译模糊,进而限制仅使用旋转不变特征参数作为分类特征集的极化SAR地物分类所得精度。针对这一问题,本文将刻画目标旋转域隐含信息的旋转域极化特征用于极化SAR地物分类,并提出了一种结合旋转域极化特征和旋转不变特征H/A/ α/SPAN的极化SAR地物分类方法,该方法将旋转域极化零角参数和H/A/ α/SPAN联合作为分类特征集输入至SVM分类器。

    将本文方法与仅使用旋转不变特征H/A/ α/SPAN作为SVM分类器输入的传统方法进行比较:对AIRSAR数据15类地物分类而言,本文方法总体分类精度达到92.3%,优于传统方法的91.1%。对多时相UAVSAR数据7类地物分类而言,本文方法平均总体分类精度达到95.72%,显著优于传统方法的87.80%,表明本文方法对同一系统的多时相数据更具稳健性。这两组对比实验也表明本文方法较好的分类性能对于不同系统的数据具有较强稳健性。

    通过对旋转域中目标极化散射信息的深入挖掘,能够为极化SAR图像的解译与应用提供一条新的可行途径。下一步将考虑旋转域极化特征与具有深度学习能力的卷积神经网络等分类器相结合,以实现更高的分类精度。另外,对极化特征参数更优的选择准则及相互融合也是我们未来将要深入研究讨论的内容。

  • 图  1  MEO SAR成像几何示意图

    Figure  1.  MEO SAR imaging geometry

    图  2  多普勒调频率平面坐标系

    Figure  2.  Doppler rate plane

    图  3  聚焦算法流程图

    Figure  3.  Flowchart of the proposed imaging algorithm

    图  4  仿真场景目标分布

    Figure  4.  Arrangement of simulated targets

    图  5  目标斜距与多普勒调频率的关系

    Figure  5.  Relationships between Doppler rates and ranges of the simulated targets

    图  6  文献[22]中NCS算法的点目标仿真结果

    Figure  6.  Simulation results using the NCS algorithm in Ref. [22]

    图  7  文献[21]中的JTDR算法的点目标仿真结果

    Figure  7.  Simulation results using the JTDR algorithm in Ref. [21]

    图  8  本文所提算法的点目标仿真结果

    Figure  8.  Simulation results using the proposed method

    图  9  不同算法运算量对比

    Figure  9.  Computation comparison using different methods

    表  1  仿真参数

    Table  1.   Simulation parameters

    类型名称
    轨道参数轨道高度(km)13000
    偏心率0
    倾角(°)90
    近地点幅角(°)0
    雷达参数载频(GHz)5.2
    带宽(MHz)105
    PRF(Hz)830
    斜视角(°)0
    入射角(°)40
    合成孔径时间(s)40.1
    地面距离/方位分辨率(m)2/2
    场景参数方位场景幅宽(km)100
    距离场景幅宽(km)100
    下载: 导出CSV

    表  2  文献[21]中JTDR算法与本文所提算法仿真PSLR及ISLR数值

    Table  2.   Compare of simulated values of PSLR and ISLR using the JTDR algorithm in Ref. [21] and the proposed method

    目标坐标文献[21]中JTDR算法本文所提算法
    PSLRISLRPSLRISLR
    方位距离方位距离方位距离方位距离
    A(6,6)–13.26–13.28–10.17–10.06–13.25–13.28–10.08–10.02
    B(6,11)–13.26–13.29–10.14–10.07–13.26–13.28–10.06–10.03
    C(1,11)–13.32–13.28–10.21–10.06–13.27–13.28–10.09–10.02
    下载: 导出CSV
  • [1] 李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085

    LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
    [2] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [3] SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/TGRS.2010.2102040
    [4] HU Bin, JIANG Yicheng, ZHANG Shunsheng, et al. Generalized omega-k algorithm for geosynchronous SAR image formation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2286–2290. doi: 10.1109/LGRS.2015.2470516
    [5] 李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071

    LI Chunsheng, YANG Wei, and WANG Pengbo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071
    [6] WONG F W and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 946–953. doi: 10.1109/36.921412
    [7] RANEY R K, RUNGE H, BAMLER R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786–799. doi: 10.1109/36.298008
    [8] SUN Guangcai, XING Mengdao, LIU Yan, et al. Extended NCS based on method of series reversion for imaging of highly squinted SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 446–450. doi: 10.1109/LGRS.2010.2084562
    [9] SHIN H S and LIM J T. Omega-K algorithm for spaceborne spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 343–347. doi: 10.1109/LGRS.2011.2168380
    [10] SHIN H S and LIM L T. Omega-k algorithm for airborne spatial invariant bistatic spotlight SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 238–250. doi: 10.1109/TGRS.2008.2002954
    [11] ZHANG Tianyi, DING Zegang, TIAN Weiming, et al. A 2-D nonlinear chirp scaling algorithm for high squint GEO SAR imaging based on optimal azimuth polynomial compensation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5724–5735. doi: 10.1109/JSTARS.2017.2765353
    [12] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Medium-earth-orbit SAR focusing using range doppler algorithm with integrated two-step azimuth perturbation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 626–630. doi: 10.1109/LGRS.2014.2353674
    [13] LI Dong, LIN Huan, LIU Hongqing, et al. Focus improvement for high-resolution highly squinted SAR imaging based on 2-D spatial-variant linear and quadratic RCMs correction and azimuth-dependent Doppler equalization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 168–183. doi: 10.1109/JSTARS.2016.2569561
    [14] LI Dexin, WU Manqing, SUN Zaoyu, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3999–4009. doi: 10.1109/JSTARS.2015.2418814
    [15] 汪丙南, 向茂生. 地球同步轨道圆迹SAR三维分辨特性分析[J]. 雷达学报, 2012, 1(3): 314–322. doi: 10.3724/SP.J.1300.2012.20044

    WANG Bingnan and XIANG Maosheng. Three-dimensional resolution analysis for geosynchronous circular SAR[J]. Journal of Radars, 2012, 1(3): 314–322. doi: 10.3724/SP.J.1300.2012.20044
    [16] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in Range-Doppler domain for geosynchronous synthetic aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635.
    [17] TANG Shiyang, LIN Chunhui, ZHOU Yu, et al. Processing of long integration time spaceborne SAR data with curved orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 888–904. doi: 10.1109/TGRS.2017.2756109
    [18] LI Zhuo, LI Chunsheng, YU Ze, et al. Back projection algorithm for high resolution GEO-SAR image formation[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 336–339.
    [19] RAN Lei, LIU Zheng, LI Tao, et al. An adaptive fast factorized back-projection algorithm with integrated target detection technique for high-resolution and high-squint spotlight SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 171–183. doi: 10.1109/JSTARS.2017.2771503
    [20] ZHANG Lei, LI Haolin, QIAO Zhijun, et al. A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1460–1464.
    [21] LIU Wenkang, SUN Guangcai, XIA Xianggen, et al. A modified CSA based on joint Time-Doppler resampling for MEO SAR stripmap mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3573–3586. doi: 10.1109/TGRS.2018.2802545
    [22] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/TGRS.2010.2053211
    [23] LIU Wenkang, SUN Guangcai, XIA Xianggen, et al. Highly squinted MEO SAR focusing based on extended Omega-K algorithm and modified joint time and Doppler resampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9188–9200. doi: 10.1109/TGRS.2019.2925385
  • 期刊类型引用(26)

    1. 刘畅宇,张浩,耿芳琳,白忠瑞,王鹏,李振锋,杜利东,陈贤祥,方震. 基于距离抽头重构的生理雷达动态解调算法. 雷达学报(中英文). 2025(01): 135-150 . 百度学术
    2. 赵翔,王威,李晨洋,关建,李刚. 基于毫米波雷达微动信号和脉搏波数据融合的睡眠呼吸暂停低通气综合征筛查技术. 雷达学报(中英文). 2025(01): 102-116 . 百度学术
    3. 武赟,张东恒,张淦霖,谢学诚,詹丰全,陈彦. 智能反射表面辅助的WiFi呼吸感知. 雷达学报(中英文). 2025(01): 189-203 . 百度学术
    4. 黄帅铭,朱晓华,王武斌,赵恒,洪弘. U-Sodar:基于超声波雷达的非接触生命体征检测技术. 雷达学报(中英文). 2025(01): 168-188 . 百度学术
    5. 田雨,王舒怡,赵博衡,方震,杨杰. 基于毫米波雷达的中医情志数据科学化探析. 中华中医药学刊. 2025(02): 12-15+259-260 . 百度学术
    6. 张冰洋,黄霞. 连续波生物雷达生命体征检测平台与实验研究. 中国现代教育装备. 2024(01): 77-79+83 . 百度学术
    7. 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 . 百度学术
    8. 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 . 百度学术
    9. 韩丽有,谭钦红,刘家森. 基于CNN-BiLSTM的FMCW雷达生命体征信号检测. 激光杂志. 2024(03): 68-73 . 百度学术
    10. 屈乐乐,杨研. 基于MIMO-FMCW雷达的多人生命体征检测. 雷达科学与技术. 2024(03): 247-254+264 . 百度学术
    11. 郭洪瑞,曹汇敏,杨克奇,张朱珊莹. 基于多通道雷达数据融合的人体心率精准测量. 生物医学工程学杂志. 2024(03): 461-468 . 百度学术
    12. 王超超,胡钧益,蒋治国,张先超. SCG信号处理与应用研究进展. 传感技术学报. 2024(06): 923-940 . 百度学术
    13. 杨天虹,屈乐乐. 基于FMCW毫米波雷达的人体生命体征检测实验设计. 实验室研究与探索. 2024(06): 60-65 . 百度学术
    14. 姬丽静,郭书文,刘瑞霞,秦钰锦,徐蔚,虞青松. 重复作业人机工程风险监测评估研究综述. 机械设计. 2024(09): 149-155 . 百度学术
    15. 邹优敏,俞卫锋,罗恒,蔡端芳,谭友果. 基于多普勒效应的非接触式呼吸探测传感器研究. 电子元件与材料. 2024(08): 938-943 . 百度学术
    16. 张冰洋,高军峰,张宇,黄龙,付君雅,曹书琪,赵小玉. 基于雷达传感器的非接触式睡眠呼吸检测系统设计. 现代电子技术. 2024(22): 7-11 . 百度学术
    17. 倪杰,王勇,杨小龙,聂伟,张茜,罗朗娟. 基于毫米波雷达的心率变异性检测方法. 移动通信. 2024(12): 103-115 . 百度学术
    18. 黄育夫,高旭. 基于毫米波雷达的睡眠监控技术研究. 家电科技. 2024(S1): 479-483 . 百度学术
    19. 陈佳欣,李灿航,刘美,孟亚男. 基于FMCW雷达的人体活动感知综述. 广东石油化工学院学报. 2024(06): 42-48 . 百度学术
    20. 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 . 百度学术
    21. 麦超云,王占,洪晓纯,黄传好,刘子明. GSWOA-VMD在毫米波雷达非接触式生命体征检测中的应用. 现代电子技术. 2023(16): 69-74 . 百度学术
    22. 刘梓隆,林志伟,张利,何华斌,蔡志明. 基于呼吸心跳时序混叠信号的毫米波雷达身份识别. 闽南师范大学学报(自然科学版). 2023(03): 107-115 . 百度学术
    23. 卢赛虎,张浩,牟岫影,王鹏,杜利东,陈贤祥,黄可,杨汀,方震. 慢阻肺数字疗法探讨. 生物医学工程研究. 2023(03): 279-284 . 百度学术
    24. 黄政钦,刘铭华,陈文骏. 非接触式生理参数检测系统的设计与实现. 科技创新与应用. 2023(34): 48-52 . 百度学术
    25. 何鹏宇,卓智海. 基于VMD-SWT联合算法的FMCW雷达生命体征检测. 北京信息科技大学学报(自然科学版). 2023(06): 41-47 . 百度学术
    26. 郑铭凯,饶彬,王伟. 基于超宽带冲激雷达的人体动作识别和心率估计数据集. 中国科学数据(中英文网络版). 2023(04): 484-495 . 百度学术

    其他类型引用(31)

  • 加载中
图(9) / 表(2)
计量
  • 文章访问数: 2408
  • HTML全文浏览量: 747
  • PDF下载量: 170
  • 被引次数: 57
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-09-15
  • 网络出版日期:  2020-10-28

目录

/

返回文章
返回