基于成像坐标系优化的中轨星载SAR成像方法

李航 刘文康 孙光才 邢孟道 李光伟 费晓燕

李航, 刘文康, 孙光才, 等. 基于成像坐标系优化的中轨星载SAR成像方法[J]. 雷达学报, 2020, 9(5): 856–864. doi: 10.12000/JR20098
引用本文: 李航, 刘文康, 孙光才, 等. 基于成像坐标系优化的中轨星载SAR成像方法[J]. 雷达学报, 2020, 9(5): 856–864. doi: 10.12000/JR20098
LI Hang, LIU Wenkang, SUN Guangcai, et al. MEO SAR imaging based on imaging coordinate system optimization[J]. Journal of Radars, 2020, 9(5): 856–864. doi: 10.12000/JR20098
Citation: LI Hang, LIU Wenkang, SUN Guangcai, et al. MEO SAR imaging based on imaging coordinate system optimization[J]. Journal of Radars, 2020, 9(5): 856–864. doi: 10.12000/JR20098

基于成像坐标系优化的中轨星载SAR成像方法

DOI: 10.12000/JR20098
基金项目: 国家自然科学基金重点项目(61931025),高等学校学科创新引智计划资助(B18039)
详细信息
    作者简介:

    李 航(1996–),女,山西吕梁人,西安电子科技大学电子工程学院博士生。主要研究方向为星载合成孔径雷达成像、海洋微波遥感观测等。E-mail: hli_xidian@163.com

    刘文康(1994–),男,河南周口人,西安电子科技大学电子工程学院博士生。主要研究方向为中轨星载合成孔径雷达成像、高轨星载合成孔径雷达成像、动目标成像处理等。E-mail: wkliu@stu.xidian.edu.cn

    孙光才(1984–),男,湖北孝感人,博士,华山特聘教授。2012年在西安电子科技大学电子工程学院获得博士学位,现担任西安电子科技大学电子工程学院副教授。主要研究方向为新体制雷达成像、运动目标检测成像。E-mail: rsandsgc@126.com

    邢孟道(1975–),男,浙江嵊州人,博士,教授,2002年在西安电子科技大学电子工程学院获得博士学位,现担任西安电子科技大学电子工程学院教授。研究方向为雷达探测、雷达成像、运动目标检测成像。E-mail: xmd@xidian.edu.cn

    通讯作者:

    刘文康 wkliu@stu.xidian.edu.cn

    孙光才 rsandsgc@126.com

  • 责任主编:李宁 Corresponding Editor: LI Ning
  • 中图分类号: TN957.52

MEO SAR Imaging Based on Imaging Coordinate System Optimization

Funds: The State Key Program of National Natural Science China (61931025), The 111 Project (B18039)
More Information
  • 摘要: 在中轨合成孔径雷达(MEO SAR)成像中,大弯曲轨道以及长合成孔径时间会导致信号产生严重的两维空变。常规方法分别在距离和方位两个方向处理空变,计算复杂度通常比较高。该文研究了大场景中的多普勒调频率的空间分布,并提出将数据变换到一种非正交非线性成像坐标系中进行成像,使中轨SAR信号在该坐标系中满足方位平移不变性,由于不需要对方位空变做额外处理,该成像方法的运算量显著降低。最后通过多普勒线性化处理可以进一步补偿高阶多普勒参数的影响,以实现场景边缘点更精确的聚焦,并校正由非线性坐标系变换引入的方位聚焦位置偏移。最后,在条带模式下仿真2 m分辨率的数据,可以验证所提出算法的有效性。

     

  • 图  1  MEO SAR成像几何示意图

    Figure  1.  MEO SAR imaging geometry

    图  2  多普勒调频率平面坐标系

    Figure  2.  Doppler rate plane

    图  3  聚焦算法流程图

    Figure  3.  Flowchart of the proposed imaging algorithm

    图  4  仿真场景目标分布

    Figure  4.  Arrangement of simulated targets

    图  5  目标斜距与多普勒调频率的关系

    Figure  5.  Relationships between Doppler rates and ranges of the simulated targets

    图  6  文献[22]中NCS算法的点目标仿真结果

    Figure  6.  Simulation results using the NCS algorithm in Ref. [22]

    图  7  文献[21]中的JTDR算法的点目标仿真结果

    Figure  7.  Simulation results using the JTDR algorithm in Ref. [21]

    图  8  本文所提算法的点目标仿真结果

    Figure  8.  Simulation results using the proposed method

    图  9  不同算法运算量对比

    Figure  9.  Computation comparison using different methods

    表  1  仿真参数

    Table  1.   Simulation parameters

    类型名称
    轨道参数轨道高度(km)13000
    偏心率0
    倾角(°)90
    近地点幅角(°)0
    雷达参数载频(GHz)5.2
    带宽(MHz)105
    PRF(Hz)830
    斜视角(°)0
    入射角(°)40
    合成孔径时间(s)40.1
    地面距离/方位分辨率(m)2/2
    场景参数方位场景幅宽(km)100
    距离场景幅宽(km)100
    下载: 导出CSV

    表  2  文献[21]中JTDR算法与本文所提算法仿真PSLR及ISLR数值

    Table  2.   Compare of simulated values of PSLR and ISLR using the JTDR algorithm in Ref. [21] and the proposed method

    目标坐标文献[21]中JTDR算法本文所提算法
    PSLRISLRPSLRISLR
    方位距离方位距离方位距离方位距离
    A(6,6)–13.26–13.28–10.17–10.06–13.25–13.28–10.08–10.02
    B(6,11)–13.26–13.29–10.14–10.07–13.26–13.28–10.06–10.03
    C(1,11)–13.32–13.28–10.21–10.06–13.27–13.28–10.09–10.02
    下载: 导出CSV
  • [1] 李春升, 于泽, 陈杰. 高分辨率星载SAR成像与图像质量提升方法综述[J]. 雷达学报, 2019, 8(6): 717–731. doi: 10.12000/JR19085

    LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085
    [2] SUN Guangcai, XING Mengdao, WANG Yong, et al. A 2-D space-variant chirp scaling algorithm based on the RCM equalization and subband synthesis to process geosynchronous SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4868–4880. doi: 10.1109/TGRS.2013.2285721
    [3] SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nonlinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308–2322. doi: 10.1109/TGRS.2010.2102040
    [4] HU Bin, JIANG Yicheng, ZHANG Shunsheng, et al. Generalized omega-k algorithm for geosynchronous SAR image formation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2286–2290. doi: 10.1109/LGRS.2015.2470516
    [5] 李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071

    LI Chunsheng, YANG Wei, and WANG Pengbo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071
    [6] WONG F W and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(5): 946–953. doi: 10.1109/36.921412
    [7] RANEY R K, RUNGE H, BAMLER R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786–799. doi: 10.1109/36.298008
    [8] SUN Guangcai, XING Mengdao, LIU Yan, et al. Extended NCS based on method of series reversion for imaging of highly squinted SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 446–450. doi: 10.1109/LGRS.2010.2084562
    [9] SHIN H S and LIM J T. Omega-K algorithm for spaceborne spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 343–347. doi: 10.1109/LGRS.2011.2168380
    [10] SHIN H S and LIM L T. Omega-k algorithm for airborne spatial invariant bistatic spotlight SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 238–250. doi: 10.1109/TGRS.2008.2002954
    [11] ZHANG Tianyi, DING Zegang, TIAN Weiming, et al. A 2-D nonlinear chirp scaling algorithm for high squint GEO SAR imaging based on optimal azimuth polynomial compensation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5724–5735. doi: 10.1109/JSTARS.2017.2765353
    [12] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Medium-earth-orbit SAR focusing using range doppler algorithm with integrated two-step azimuth perturbation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 626–630. doi: 10.1109/LGRS.2014.2353674
    [13] LI Dong, LIN Huan, LIU Hongqing, et al. Focus improvement for high-resolution highly squinted SAR imaging based on 2-D spatial-variant linear and quadratic RCMs correction and azimuth-dependent Doppler equalization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 168–183. doi: 10.1109/JSTARS.2016.2569561
    [14] LI Dexin, WU Manqing, SUN Zaoyu, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3999–4009. doi: 10.1109/JSTARS.2015.2418814
    [15] 汪丙南, 向茂生. 地球同步轨道圆迹SAR三维分辨特性分析[J]. 雷达学报, 2012, 1(3): 314–322. doi: 10.3724/SP.J.1300.2012.20044

    WANG Bingnan and XIANG Maosheng. Three-dimensional resolution analysis for geosynchronous circular SAR[J]. Journal of Radars, 2012, 1(3): 314–322. doi: 10.3724/SP.J.1300.2012.20044
    [16] CHEN Jianlai, SUN Guangcai, WANG Yong, et al. A TSVD-NCS algorithm in Range-Doppler domain for geosynchronous synthetic aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11): 1631–1635.
    [17] TANG Shiyang, LIN Chunhui, ZHOU Yu, et al. Processing of long integration time spaceborne SAR data with curved orbit[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 888–904. doi: 10.1109/TGRS.2017.2756109
    [18] LI Zhuo, LI Chunsheng, YU Ze, et al. Back projection algorithm for high resolution GEO-SAR image formation[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 336–339.
    [19] RAN Lei, LIU Zheng, LI Tao, et al. An adaptive fast factorized back-projection algorithm with integrated target detection technique for high-resolution and high-squint spotlight SAR imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 171–183. doi: 10.1109/JSTARS.2017.2771503
    [20] ZHANG Lei, LI Haolin, QIAO Zhijun, et al. A fast BP algorithm with wavenumber spectrum fusion for high-resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1460–1464.
    [21] LIU Wenkang, SUN Guangcai, XIA Xianggen, et al. A modified CSA based on joint Time-Doppler resampling for MEO SAR stripmap mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6): 3573–3586. doi: 10.1109/TGRS.2018.2802545
    [22] HUANG Lijia, QIU Xiaolan, HU Donghui, et al. Focusing of medium-earth-orbit SAR with advanced nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 500–508. doi: 10.1109/TGRS.2010.2053211
    [23] LIU Wenkang, SUN Guangcai, XIA Xianggen, et al. Highly squinted MEO SAR focusing based on extended Omega-K algorithm and modified joint time and Doppler resampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9188–9200. doi: 10.1109/TGRS.2019.2925385
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  2557
  • HTML全文浏览量:  825
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-09-15
  • 网络出版日期:  2020-10-28

目录

    /

    返回文章
    返回