-
摘要: 针对传统噪声卷积调制的合成孔径雷达(SAR)虚假信号方法存在距离向位置滞后、方位向压制范围不可控的缺陷,该文提出了一种改进的虚假信号生成方法。该方法首先对截获信号作快时间域移频调制,以控制掩护面的距离向位置;接着将其与经过了慢时间域滤波处理的噪声模板卷积,以控制掩护面积。理论分析与仿真结果表明,相比于传统噪声卷积调制,该文所提的方法可有效控制掩护面的距离向位置和面积,即使在较大侦察误差下仍能对局部场景实施掩护,提高了相同条件下的干扰能量利用率,对实际工程应用具有一定的参考价值。Abstract: Suppression position of the traditional noise convolution modulation Synthetic Aperture Radar (SAR) jamming lags behind in range and suppression area in azimuth is uncontrollable. Considering this defect, an enhanced jamming method is proposed herein. First, the frequency of the intercepted signal is shifted in fast-time to control the suppression position in range. Then, the convolution with the noise is implemented, which has been filtered in slow-time, to control the suppression area in azimuth. Theoretical analysis and simulation results demonstrate that the proposed jamming method can efficiently control the jamming position in range and suppression area when compared with the traditional noise convolution modulation jamming. Even if some reconnaissance errors exist, the local scenario can still be shielded effectively. Furthermore, the utilization efficiency of jamming energy is also improved under the same condition, which will provide some reference values and inputs for engineering applications.
-
表 1 干扰增益对比
Table 1. The comparison of jamming gain
干扰样式 干扰参数 干扰增益(dB) 噪声模板的快时间宽度(s) 噪声模板的慢时间单边带宽(Hz) 理论值 实验值 传统噪声卷积调制干扰 ${{4}}{{.7}} \times {10^{ - 7}}$ ${{400}}$ 7.5467 7.8062 ${{2}}{{.4}} \times {10^{ - 7}}$ ${{400}}$ 10.2765 10.7468 ${{1}}{{.2}} \times {10^{ - 7}}$ ${{400}}$ 13.0147 13.6788 本文所提干扰 ${{18}}{{.9}} \times {10^{ - {{6}}}}$ ${{283}}$ 4.0968 3.9470 ${{9}}{{.4}} \times {10^{ - 7}}$ ${{94}}$ 11.2159 11.8195 ${{2}}{{.4}} \times {10^{ - 7}}$ ${{19}}$ 23.5414 23.2726 -
[1] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005. [2] 纪朋徽, 代大海, 吴昊, 等. SAR成像电子对抗技术综述[J]. 无线电工程, 2019, 49(6): 508–513.JI Penghui, DAI Dahai, WU Hao, et al. Review of SAR imaging electronic countermeasures[J]. Radio Engineering, 2019, 49(6): 508–513. [3] SUN Hongbo, SHIMADA M, and XU Feng. Recent advances in synthetic aperture radar remote sensing-systems, data processing, and applications[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2013–2016. doi: 10.1109/LGRS.2017.2747602 [4] CHANG Xin and DONG Chunxi. A barrage noise jamming method based on double jammers against three channel SAR GMTI[J]. IEEE Access, 2019, 7: 18755–18763. doi: 10.1109/ACCESS.2019.2897043 [5] 刘玉玲. SAR有源假目标精确位置欺骗干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2012.LIU Yuling. Research on SAR precisely position deception jamming[D]. [Master dissertation], National University of Defense Technology, 2012. [6] SCHLEHER D C. Electronic Warfare in the Information Age[M]. Boston, MA: Artech House, 2000. [7] 李欣, 王春阳, 原慧, 等. 雷达灵巧干扰样式建模及仿真研究[J]. 航天电子对抗, 2015, 31(5): 38–41, 59.LI Xin, WANG Chunyang, YUAN Hui, et al. The modeling and simulation of radar smart jamming types[J]. Aerospace Electronic Warfare, 2015, 31(5): 38–41, 59. [8] ABOUELFADL A, SAMIR A M, AHMED F M, et al. Performance analysis of LFM pulse compression radar under effect of convolution noise jamming[C]. The 2016 33rd National Radio Science Conference, Aswan, Egypt, 2016: 282–289. [9] GONG Shixian, WEI Xizhang, LI Xiang, et al. Mathematic principle of active jamming against wideband LFM radar[J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 50–60. doi: 10.1109/JSEE.2015.00008 [10] HAO Honglian, ZENG Dazhi, GE Ping, et al. Research on the method of smart noise jamming on pulse radar[C]. The 2015 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control, Qinhuangdao, China, 2015: 1339–1342. [11] 邱杰. 灵巧噪声干扰本质含义探讨[J]. 海军航空工程学院学报, 2011, 26(5): 481–484.QIU Jie. Research on essential signification of smart noise jamming[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(5): 481–484. [12] 曾云健, 陶建锋, 孙青. 灵巧噪声在SAR中的干扰应用研究[J]. 航天电子对抗, 2009, 25(2): 39–41.ZENG Yunjian, TAO Jianfeng, and SUN Qing. Application and research of smart noise in jamming SAR[J]. Aerospace Electronic Warfare, 2009, 25(2): 39–41. [13] 吕波, 冯起, 张晓发, 等. 对SAR的随机脉冲卷积干扰研究[J]. 中国电子科学研究院学报, 2008, 3(3): 276–279.LV Bo, FENG Qi, ZHANG Xiaofa, et al. Study of random pulse convolution jamming to SAR[J]. Journal of CAEIT, 2008, 3(3): 276–279. [14] 降佳伟, 吴彦鸿, 王宏艳, 等. 一种对SAR-GMTI的密集假目标干扰技术[J]. 舰船电子对抗, 2016, 39(1): 9–14, 88.JIANG Jiawei, WU Yanhong, WANG Hongyan, et al. A dense false target jamming technique against SAR-GMTI[J]. Shipboard Electronic Countermeasure, 2016, 39(1): 9–14, 88. [15] 周传晟. 合成孔径雷达卷积干扰技术的研究[J]. 舰船电子对抗, 2013, 36(2): 6–10.ZHOU Chuansheng. Study of convolution jamming technology of synthetic aperture radar[J]. Shipboard Electronic Countermeasure, 2013, 36(2): 6–10. [16] 沈爱国, 姜秋喜. 脉冲卷积干扰技术在超宽带SAR中的应用分析[J]. 电光与控制, 2010, 17(2): 39–42.SHEN Aiguo and JIANG Qiuxi. Analysis of pulse convolution jamming technique applied to counter UWB SAR[J]. Electronics Optics &Control, 2010, 17(2): 39–42. [17] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468.HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468. [18] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的随机移频干扰[J]. 信号处理, 2007, 23(1): 41–45.HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. Randomly-shift-frequency jamming style to SAR[J]. Signal Processing, 2007, 23(1): 41–45. [19] 黄洪旭, 黄知涛, 吴京, 等. 对合成孔径雷达的步进移频干扰[J]. 宇航学报, 2011, 32(4): 898–902.HUANG Hongxu, HUANG Zhitao, Wu Jing, et al. Stepped-shift-frequency jamming to SAR[J]. Journal of Astronautics, 2011, 32(4): 898–902. [20] YANG Kaizhi, YE Wei, MA Fangfang, et al. A large-scene deceptive jamming method for space-borne SAR based on time-delay and frequency-shift with template segmentation[J]. Remote Sensing, 2020, 12(1): 53. doi: 10.3390/rs12010053 [21] 和小冬. 弹载合成孔径雷达干扰技术研究[D]. [博士论文], 电子科技大学, 2015.HE Xiaodong. Research on the jamming technologies of missile-borne synthetic aperture radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2015. [22] YE Wei, RUAN Hang, ZHANG Shuxian, et al. Study of noise jamming based on convolution modulation to SAR[C]. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 2010: 169–172. [23] 房明星, 王杰贵, 雷磊. SAR雷达二维噪声卷积调制干扰研究[J]. 现代防御技术, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025FANG Mingxing, WANG Jiegui, and LEI Lei. Study on 2D noise convolution modulation jamming to SAR[J]. Modern Defense Technology, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025 [24] ZHANG Yanbin. Technology of smart noise jamming based on multiplication modulation[C]. 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 2011: 4557–4559. [25] 朱宁龙, 刘海亮. 移频对卷积调制灵巧噪声干扰的影响研究[J]. 舰船电子对抗, 2016, 39(2): 17–20. doi: 10.16426/j.cnki.jcdzdk.2016.02.005ZHU Ninglong and LIU Hailiang. Research into the influence of frequency shift on smart noise jamming with convolution modulation[J]. Shipboard Electronic Countermeasure, 2016, 39(2): 17–20. doi: 10.16426/j.cnki.jcdzdk.2016.02.005 [26] 林欢, 甘德云, 李宏, 等. 基于移频卷积的合成孔径雷达干扰技术研究[J]. 军械工程学院学报, 2014, 26(4): 47–50.LIN Huan, GAN Deyun, LI Hong, et al. Interference technology research of synthetic aperture radar based on frequency-shift convolution[J]. Journal of Ordnance Engineering College, 2014, 26(4): 47–50. [27] 吴晓芳, 邢世其, 王雪松, 等. 对合成孔径雷达的脉间分段移频干扰[J]. 航天电子对抗, 2010, 26(1): 53–57.WU Xiaofang, XING Shiqi, WANG Xuesong, et al. Interpulse subsection-shift-frequency jamming to SAR[J]. Aerospace Electronic Warfare, 2010, 26(1): 53–57. [28] 栾琳. 灵巧噪声干扰的建模仿真研究[D]. [硕士论文], 西安电子科技大学, 2009.LUAN Lin. Modeling, simulation and study of smart noise jamming[D]. [Master dissertation], Xidian University, 2009. [29] LIU Yongcai, WANG Wei, DAI Shaoqi, et al. Transmitter power comparison between incoherent noise and coherent deceptive jamming against synthetic aperture radar[C]. 2017 IEEE Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, 2017: 279–284. [30] 刘永才. 基于卷积调制的SAR有源欺骗干扰技术[D]. [硕士论文], 国防科学技术大学, 2013.LIU Yongcai. Active deceptive jamming against SAR based on convolutional modulation[D]. [Master dissertation], National University of Defense Technology, 2013.