基于噪声卷积调制的SAR虚假信号生成新方法

黄大通 邢世其 刘业民 李永祯 肖顺平

黄大通, 邢世其, 刘业民, 等. 基于噪声卷积调制的SAR虚假信号生成新方法[J]. 雷达学报, 2020, 9(5): 898–907. doi: 10.12000/JR20094
引用本文: 黄大通, 邢世其, 刘业民, 等. 基于噪声卷积调制的SAR虚假信号生成新方法[J]. 雷达学报, 2020, 9(5): 898–907. doi: 10.12000/JR20094
HUANG Datong, XING Shiqi, LIU Yemin, et al. Fake SAR signal generation method based on noise convolution modulation[J]. Journal of Radars, 2020, 9(5): 898–907. doi: 10.12000/JR20094
Citation: HUANG Datong, XING Shiqi, LIU Yemin, et al. Fake SAR signal generation method based on noise convolution modulation[J]. Journal of Radars, 2020, 9(5): 898–907. doi: 10.12000/JR20094

基于噪声卷积调制的SAR虚假信号生成新方法

DOI: 10.12000/JR20094
基金项目: 国家自然科学基金(61971429, 61901499)
详细信息
    作者简介:

    黄大通(1993–),男,博士研究生,主要研究方向为合成孔径雷达信号处理与对抗。E-mail:huangdatong68@163.com

    邢世其(1984–),男,副研究员,主要研究方向为极化雷达成像、雷达信号处理以及合成孔径雷达对抗。E-mail: xingshiqi_paper@163.com

    刘业民(1982–),男,博士,工程师,主要研究方向为雷达干扰与反干扰、极化雷达信号处理。E-mail: liuyemin2@163.com

    李永祯(1977–),男,研究员,博士生导师,主要研究方向为极化雷达与电子对抗。E-mail: e0061@sina.com

    肖顺平(1964–),男,教授,博士生导师,主要研究方向为极化信息处理、电子仿真与雷达目标识别、雷达电子对抗。E-mail: xiaoshunping_nudt@163.com

    通讯作者:

    邢世其 xingshiqi_paper@163.com

  • 责任主编:周峰 Corresponding Editor: ZHOU Feng
  • 中图分类号: TN95

Fake SAR Signal Generation Method Based on Noise Convolution Modulation

Funds: The National Natural Science Foundation of China (61971429, 61901499)
More Information
  • 摘要: 针对传统噪声卷积调制的合成孔径雷达(SAR)虚假信号方法存在距离向位置滞后、方位向压制范围不可控的缺陷,该文提出了一种改进的虚假信号生成方法。该方法首先对截获信号作快时间域移频调制,以控制掩护面的距离向位置;接着将其与经过了慢时间域滤波处理的噪声模板卷积,以控制掩护面积。理论分析与仿真结果表明,相比于传统噪声卷积调制,该文所提的方法可有效控制掩护面的距离向位置和面积,即使在较大侦察误差下仍能对局部场景实施掩护,提高了相同条件下的干扰能量利用率,对实际工程应用具有一定的参考价值。

     

  • 图  1  干扰场景的几何模型

    Figure  1.  The geometry model of jamming scenario

    图  2  传统噪声卷积调制的干扰结果

    Figure  2.  The imaging results of the traditional noise convolution modulation jamming

    图  3  距离向偏移量$\Delta {R_{{\rm{shif}}t}} = - 242 \;{\rm{m}}$,压制面积$300 \;{\rm{m}} \times {\rm{400}} \;{\rm{m}}$

    Figure  3.  Range offset $\Delta {R_{{\rm{shift}}}} = - 242 \;{\rm{m}}$, suppression area $300 {\rm{m}} \times {\rm{400}} \;{\rm{m}}$

    图  4  距离向偏移量$\Delta {R_{{\rm{shift}}}} = - 142 \;{\rm{m}}$,压制面积$100 \;{\rm{m}} \times {\rm{200}} \;{\rm{m}}$

    Figure  4.  Range offset $\Delta {R_{{\rm{shift}}}} = - 142 \;{\rm{m}}$, suppression area $100 \;{\rm{m}} \times {\rm{200}} \;{\rm{m}}$

    图  5  距离向偏移量$\Delta {R_{{\rm{shift}}}} = - 167 \;{\rm{m}}$,压制面积$20 \;{\rm{m}} \times 5{\rm{0}} \;{\rm{m}}$

    Figure  5.  Range offset $\Delta {R_{{\rm{shift}}}} = - 167 \;{\rm{m}}$, suppression area $20 \;{\rm{m}} \times 5{\rm{0}} \;{\rm{m}}$

    图  6  侦察误差下的干扰结果

    Figure  6.  The jamming results under reconnaissance error

    表  1  干扰增益对比

    Table  1.   The comparison of jamming gain

    干扰样式干扰参数干扰增益(dB)
    噪声模板的快时间宽度(s)噪声模板的慢时间单边带宽(Hz)理论值实验值
    传统噪声卷积调制干扰${{4}}{{.7}} \times {10^{ - 7}}$${{400}}$7.54677.8062
    ${{2}}{{.4}} \times {10^{ - 7}}$${{400}}$10.276510.7468
    ${{1}}{{.2}} \times {10^{ - 7}}$${{400}}$13.014713.6788
    本文所提干扰${{18}}{{.9}} \times {10^{ - {{6}}}}$${{283}}$4.09683.9470
    ${{9}}{{.4}} \times {10^{ - 7}}$${{94}}$11.215911.8195
    ${{2}}{{.4}} \times {10^{ - 7}}$${{19}}$23.541423.2726
    下载: 导出CSV
  • [1] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [2] 纪朋徽, 代大海, 吴昊, 等. SAR成像电子对抗技术综述[J]. 无线电工程, 2019, 49(6): 508–513.

    JI Penghui, DAI Dahai, WU Hao, et al. Review of SAR imaging electronic countermeasures[J]. Radio Engineering, 2019, 49(6): 508–513.
    [3] SUN Hongbo, SHIMADA M, and XU Feng. Recent advances in synthetic aperture radar remote sensing-systems, data processing, and applications[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2013–2016. doi: 10.1109/LGRS.2017.2747602
    [4] CHANG Xin and DONG Chunxi. A barrage noise jamming method based on double jammers against three channel SAR GMTI[J]. IEEE Access, 2019, 7: 18755–18763. doi: 10.1109/ACCESS.2019.2897043
    [5] 刘玉玲. SAR有源假目标精确位置欺骗干扰技术研究[D]. [硕士论文], 国防科学技术大学, 2012.

    LIU Yuling. Research on SAR precisely position deception jamming[D]. [Master dissertation], National University of Defense Technology, 2012.
    [6] SCHLEHER D C. Electronic Warfare in the Information Age[M]. Boston, MA: Artech House, 2000.
    [7] 李欣, 王春阳, 原慧, 等. 雷达灵巧干扰样式建模及仿真研究[J]. 航天电子对抗, 2015, 31(5): 38–41, 59.

    LI Xin, WANG Chunyang, YUAN Hui, et al. The modeling and simulation of radar smart jamming types[J]. Aerospace Electronic Warfare, 2015, 31(5): 38–41, 59.
    [8] ABOUELFADL A, SAMIR A M, AHMED F M, et al. Performance analysis of LFM pulse compression radar under effect of convolution noise jamming[C]. The 2016 33rd National Radio Science Conference, Aswan, Egypt, 2016: 282–289.
    [9] GONG Shixian, WEI Xizhang, LI Xiang, et al. Mathematic principle of active jamming against wideband LFM radar[J]. Journal of Systems Engineering and Electronics, 2015, 26(1): 50–60. doi: 10.1109/JSEE.2015.00008
    [10] HAO Honglian, ZENG Dazhi, GE Ping, et al. Research on the method of smart noise jamming on pulse radar[C]. The 2015 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control, Qinhuangdao, China, 2015: 1339–1342.
    [11] 邱杰. 灵巧噪声干扰本质含义探讨[J]. 海军航空工程学院学报, 2011, 26(5): 481–484.

    QIU Jie. Research on essential signification of smart noise jamming[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(5): 481–484.
    [12] 曾云健, 陶建锋, 孙青. 灵巧噪声在SAR中的干扰应用研究[J]. 航天电子对抗, 2009, 25(2): 39–41.

    ZENG Yunjian, TAO Jianfeng, and SUN Qing. Application and research of smart noise in jamming SAR[J]. Aerospace Electronic Warfare, 2009, 25(2): 39–41.
    [13] 吕波, 冯起, 张晓发, 等. 对SAR的随机脉冲卷积干扰研究[J]. 中国电子科学研究院学报, 2008, 3(3): 276–279.

    LV Bo, FENG Qi, ZHANG Xiaofa, et al. Study of random pulse convolution jamming to SAR[J]. Journal of CAEIT, 2008, 3(3): 276–279.
    [14] 降佳伟, 吴彦鸿, 王宏艳, 等. 一种对SAR-GMTI的密集假目标干扰技术[J]. 舰船电子对抗, 2016, 39(1): 9–14, 88.

    JIANG Jiawei, WU Yanhong, WANG Hongyan, et al. A dense false target jamming technique against SAR-GMTI[J]. Shipboard Electronic Countermeasure, 2016, 39(1): 9–14, 88.
    [15] 周传晟. 合成孔径雷达卷积干扰技术的研究[J]. 舰船电子对抗, 2013, 36(2): 6–10.

    ZHOU Chuansheng. Study of convolution jamming technology of synthetic aperture radar[J]. Shipboard Electronic Countermeasure, 2013, 36(2): 6–10.
    [16] 沈爱国, 姜秋喜. 脉冲卷积干扰技术在超宽带SAR中的应用分析[J]. 电光与控制, 2010, 17(2): 39–42.

    SHEN Aiguo and JIANG Qiuxi. Analysis of pulse convolution jamming technique applied to counter UWB SAR[J]. Electronics Optics &Control, 2010, 17(2): 39–42.
    [17] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468.

    HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468.
    [18] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的随机移频干扰[J]. 信号处理, 2007, 23(1): 41–45.

    HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. Randomly-shift-frequency jamming style to SAR[J]. Signal Processing, 2007, 23(1): 41–45.
    [19] 黄洪旭, 黄知涛, 吴京, 等. 对合成孔径雷达的步进移频干扰[J]. 宇航学报, 2011, 32(4): 898–902.

    HUANG Hongxu, HUANG Zhitao, Wu Jing, et al. Stepped-shift-frequency jamming to SAR[J]. Journal of Astronautics, 2011, 32(4): 898–902.
    [20] YANG Kaizhi, YE Wei, MA Fangfang, et al. A large-scene deceptive jamming method for space-borne SAR based on time-delay and frequency-shift with template segmentation[J]. Remote Sensing, 2020, 12(1): 53. doi: 10.3390/rs12010053
    [21] 和小冬. 弹载合成孔径雷达干扰技术研究[D]. [博士论文], 电子科技大学, 2015.

    HE Xiaodong. Research on the jamming technologies of missile-borne synthetic aperture radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2015.
    [22] YE Wei, RUAN Hang, ZHANG Shuxian, et al. Study of noise jamming based on convolution modulation to SAR[C]. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, Changchun, China, 2010: 169–172.
    [23] 房明星, 王杰贵, 雷磊. SAR雷达二维噪声卷积调制干扰研究[J]. 现代防御技术, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025

    FANG Mingxing, WANG Jiegui, and LEI Lei. Study on 2D noise convolution modulation jamming to SAR[J]. Modern Defense Technology, 2014, 42(2): 139–144, 160. doi: 10.3969/j.issn.1009-086x.2014.02.025
    [24] ZHANG Yanbin. Technology of smart noise jamming based on multiplication modulation[C]. 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 2011: 4557–4559.
    [25] 朱宁龙, 刘海亮. 移频对卷积调制灵巧噪声干扰的影响研究[J]. 舰船电子对抗, 2016, 39(2): 17–20. doi: 10.16426/j.cnki.jcdzdk.2016.02.005

    ZHU Ninglong and LIU Hailiang. Research into the influence of frequency shift on smart noise jamming with convolution modulation[J]. Shipboard Electronic Countermeasure, 2016, 39(2): 17–20. doi: 10.16426/j.cnki.jcdzdk.2016.02.005
    [26] 林欢, 甘德云, 李宏, 等. 基于移频卷积的合成孔径雷达干扰技术研究[J]. 军械工程学院学报, 2014, 26(4): 47–50.

    LIN Huan, GAN Deyun, LI Hong, et al. Interference technology research of synthetic aperture radar based on frequency-shift convolution[J]. Journal of Ordnance Engineering College, 2014, 26(4): 47–50.
    [27] 吴晓芳, 邢世其, 王雪松, 等. 对合成孔径雷达的脉间分段移频干扰[J]. 航天电子对抗, 2010, 26(1): 53–57.

    WU Xiaofang, XING Shiqi, WANG Xuesong, et al. Interpulse subsection-shift-frequency jamming to SAR[J]. Aerospace Electronic Warfare, 2010, 26(1): 53–57.
    [28] 栾琳. 灵巧噪声干扰的建模仿真研究[D]. [硕士论文], 西安电子科技大学, 2009.

    LUAN Lin. Modeling, simulation and study of smart noise jamming[D]. [Master dissertation], Xidian University, 2009.
    [29] LIU Yongcai, WANG Wei, DAI Shaoqi, et al. Transmitter power comparison between incoherent noise and coherent deceptive jamming against synthetic aperture radar[C]. 2017 IEEE Microwaves, Radar and Remote Sensing Symposium, Kiev, Ukraine, 2017: 279–284.
    [30] 刘永才. 基于卷积调制的SAR有源欺骗干扰技术[D]. [硕士论文], 国防科学技术大学, 2013.

    LIU Yongcai. Active deceptive jamming against SAR based on convolutional modulation[D]. [Master dissertation], National University of Defense Technology, 2013.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2184
  • HTML全文浏览量:  1054
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-09-17
  • 网络出版日期:  2020-10-28

目录

    /

    返回文章
    返回