Processing math: 100%

基于稀疏重构的全极化SAR联合多维重建

孙豆 路东伟 邢世其 杨潇 李永祯 王雪松

苏汉宁, 潘嘉蒙, 鲍庆龙, 等. 基于波形域的匹配滤波前抗间歇采样转发干扰方法[J]. 雷达学报(中英文), 2024, 13(1): 240–252. doi: 10.12000/JR23149
引用本文: 孙豆, 路东伟, 邢世其, 等. 基于稀疏重构的全极化SAR联合多维重建[J]. 雷达学报, 2020, 9(5): 865–877. doi: 10.12000/JR20092
SU Hanning, PAN Jiameng, BAO Qinglong, et al. Anti-interrupted sampling repeater jamming method in the waveform domain before matched filtering[J]. Journal of Radars, 2024, 13(1): 240–252. doi: 10.12000/JR23149
Citation: SUN Dou, LU Dongwei, XING Shiqi, et al. Full-polarization SAR joint multidimensional reconstruction based on sparse reconstruction [J]. Journal of Radars, 2020, 9(5): 865–877. doi: 10.12000/JR20092

基于稀疏重构的全极化SAR联合多维重建

DOI: 10.12000/JR20092
基金项目: 国家自然科学基金(61971429, 61901499)
详细信息
    作者简介:

    孙 豆(1992–),女,博士研究生,主要研究方向为极化雷达成像和雷达信号处理。E-mail: sundou14@nudt.edu.cn

    路东伟(1992–),男,博士研究生,主要研究方向为合成孔径雷达对抗和雷达目标识别。E-mail: bookwormldw@qq.com

    邢世其(1984–),男,副研究员,主要研究方向为极化雷达成像、雷达信号处理以及合成孔径雷达对抗。E-mail: xingshiqi_paper@163.com

    杨 潇(1983–),男,助教,主要研究方向为雷达信号处理和雷达目标识别。E-mail: 297414430@qq.com

    李永祯(1977–),男,研究员,博士生导师,主要研究方向为极化雷达与电子对抗。E-mail: e0061@sina.com

    王雪松(1972–),男,教授,博士生导师,主要研究方向为极化雷达、目标识别与电子对抗。E-mail: wxs1019@vip.sina.com

    通讯作者:

    邢世其 xingshiqi_paper@163.com

  • 责任主编:仇晓兰 Corresponding Editor: QIU Xiaolan
  • 中图分类号: TN95

Full-polarization SAR Joint Multidimensional Reconstruction Based on Sparse Reconstruction

Funds: The National Natural Science Foundation of China (61971429, 61901499)
More Information
  • 摘要: 各极化通道独立处理和三维分步成像会忽视数据之间的关联性,造成散射中心的失配以及极化散射矩阵获取的不准确。鉴于此,该文提出一种基于稀疏重构的全极化联合多维重建方法。该方法通过设置联合稀疏约束对所有极化通道及所有维度进行联合,将全极化多维重建建模为多通道联合稀疏重构问题。通过数据插值对模型简化后,结合三维快速傅里叶变换、共轭梯度法和牛顿迭代法给出一种高效的模型求解方法,可以同时得到极化散射矩阵和目标三维信息。该文方法保证了不同极化通道、不同维度的稀疏支撑集一致,且充分利用了数据之间的关联性带来的额外信息。基于仿真数据和电磁计算数据的实验结果表明,该方法的性能不受目标类型影响,具有一定的抗噪性,能有效地获取目标的多维重建结果,得到的三维成像结果分辨率高且极化散射矩阵估计精度高。

     

  • 图  1  各个极化通道的仿真目标成像结果

    Figure  1.  Each polarization channel’s imaging results of simulated targets

    图  2  仿真目标全极化联合多维重建结果

    Figure  2.  Full polarization joint multi-dimensional reconstruction results of simulated targets

    图  3  Slicy的CAD模型

    Figure  3.  CAD model of Slicy

    图  4  各个极化通道的Slicy成像结果

    Figure  4.  Each polarization channel’s imaging results of Slicy

    图  5  Slicy全极化联合多维重建结果

    Figure  5.  Full polarization joint multi-dimensional reconstruction results of Slicy

    图  6  卫星的CAD模型

    Figure  6.  CAD model of satellite

    图  7  各个极化通道的卫星成像结果

    Figure  7.  Each polarization channel’s imaging results of satellite

    图  8  卫星全极化联合多维重建结果

    Figure  8.  Full polarization joint multi-dimensional reconstruction results of satellite

    表  1  全极化联合多维重建方法的步骤

    Table  1.   Steps of full polarization joint multi-dimensional reconstruction method

     (1) 设定初值:˜βn=0
     (2) 对每个极化通道,
       (a) 使用3-D NUFFT对Gl(kx,ky,kz)进行插值,得到
         ˆGl(ˆkx,ˆky,ˆkz)
       (b) 对ˆGl(ˆkx,ˆky,ˆkz)进行3-D IFFT,并向量化结果得到
         ˆAHˆbl
     (3) 根据所有极化通道的ˆAHˆbl,得到ˆAHˆb
     (4) 结合3-D FFT,3-D IFFT和共轭梯度法计算
       (2ˆAHˆA+μpD(˜βn))1
     (5) 根据ˆAHˆb,计算(2ˆAHˆA+μpD(˜βn))12ˆAHˆb
     (6) 按式(17)迭代计算˜βn+1,当˜βn+1˜βn22/˜βn22<τ
       得到解˜β=˜βn+1
     (7) 对˜β进行Cameron分解,得到全极化联合多维重建结果。
    下载: 导出CSV

    表  2  仿真目标信息

    Table  2.   Information of simulated targets

    类型散射矩阵幅度位置
    三面角[1001]1x=1.0m,y=0.5m,z=0.7m
    偶极子[1000]1x=1.0m,y=0.5m,z=0.7m
    30°二面角[0.50.8660.8660.5]1x=0.5m,y=1.0m,z=0.7m
    45°二面角[0110]1x=0.5m,y=1.0m,z=0.7m
    下载: 导出CSV

    表  3  目标的仿真参数

    Table  3.   Simulation parameters of simulated targets

    雷达扫描参数
    频率范围[8 GHz, 12 GHz]
    频率采样间隔20 MHz
    方位角范围[–4°, 6°]
    方位角采样间隔1/14°
    俯仰角范围[18°, 42°]
    俯仰角采样间隔1/14°
    极化方式HH, HV, VH, VV
    下载: 导出CSV

    表  4  仿真目标的极化散射矩阵估计结果

    Table  4.   Polarization scattering matrix estimation results of simulated targets

    方法目标类型三面角偶极子30°二面角45°二面角
    联合多维重建变型前[0.4j000.4j][0.38j000][0.210.370.370.21][00.420.420]
    变型后0.4ej90[1001]0.38ej(90)[1000]0.42ej180[0.50.880.880.5]0.42ej180[0110]
    独立多维重建变型前[0.38j000.38j][0.38j000][0.13+0.02j0.34+0.06j0.34+0.06j0.130.02j][00.40.07j0.40.07j0]
    变型后0.38ej89[1001]0.38ej(89)[1000]0.26ej170[0.51.351.350.5]0.41ej(170)[0110]
    下载: 导出CSV

    表  5  不同SNR下仿真目标的极化散射矩阵估计结果

    Table  5.   Polarization scattering matrix estimation results of simulated targets under different SNR

    目标类型SNR=13 dBSNR=18 dBSNR=23 dB


    变型
    [0.01+0.39j0.020.01+0.01j0.02+0.39j][0.02+0.4j0.010.02j0.03j0.01+0.4j][0.01+0.41j0.02j0.010.01+0.40j]
    变型
    0.39ej88.7[10.020.06j0.030.04j1.03+0.07j]0.4ej92.2o[10.040.03j0.090.01j1.010.06j]0.41ej88.6[10.040.02+0.03j0.970.01j]


    变型
    [0.020.38j0.01j0.02+0.02j0.03j][0.020.41j0.02+0.01j0.01+0.01j0.01][0.4j0.02j00]
    变型
    0.38ej(86.8o)[10.030.050.05j0.080.13j]0.41ej(87.3o)[10.02+0.06j0.020.01j0.01+0.01j]0.4ej90o[10.0500]
    30°
    二面
    变型
    [0.16+0.02j0.28+0.04j0.39+0.07j0.20.04j][0.22+0.03j0.37+0.06j0.39+0.06j0.240.04j][0.22+0.04j0.39+0.06j0.37+0.05j0.220.04j]
    变型
    0.33ej172.4o[0.50.841.180.07j0.6+0.04j]0.45ej172.3o[0.50.850.03j0.890.02j0.53+0.03j]0.45ej169.4o[0.50.87+0.02j0.84+0.04j0.5]
    45°
    二面
    变型
    [0.020.410.06j0.450.06j0.02][0.01+0.01j0.460.06j0.440.08j0.01j][00.430.01j0.420.08j0.02j]
    变型
    0.42ej(171.8o)[0.0511.010.04]0.46ej(172.4o)[0.020.01j10.96+0.05j0.01+0.02j]0.44ej(170.7o)[010.98+0.01j0.020.05j]
    下载: 导出CSV

    表  6  Slicy的仿真参数

    Table  6.   Simulation parameters of Slicy

    参数类型参数取值
    雷达扫描参数频率范围[8 GHz, 12 GHz]
    频率采样间隔20 MHz
    方位角范围[–4°, 6°]
    方位角采样间隔1/14°
    俯仰角范围[18°, 42°]
    俯仰角采样间隔1/14°
    极化方式HH, HV, VH, VV
    场景参数方位角0°沿x 轴正方向
    俯仰角0°沿z 轴正方向
    x 轴方向场景范围[–0.6 m, 0.6 m]
    y 轴方向场景范围[–0.9 m, 0.9 m]
    z 轴方向场景范围[0 m, 0.75 m]
    下载: 导出CSV

    表  7  卫星的仿真参数

    Table  7.   Simulation parameters of satellite

    参数类型参数取值
    雷达扫描参数频率范围[9 GHz, 11 GHz]
    频率采样间隔20 MHz
    方位角范围[–20°, 20°]
    方位角采样间隔0.1°
    俯仰角范围[45°, 65°]
    俯仰角采样间隔0.2°
    极化方式HH, HV, VH, VV
    场景参数方位角0°沿x 轴正方向
    俯仰角0°沿z 轴正方向
    x 轴方向场景范围[–0.5 m, 0.5 m]
    y 轴方向场景范围[–4.105 m, 4.105 m]
    z 轴方向场景范围[–1.775 m, 1.775 m]
    下载: 导出CSV
  • [1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging[M] Beijing: Publishing House of Electronics Industry, 2005.
    [2] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation[M]. Boston: Artech House, 2005.
    [3] LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton, FL: CRC Press, 2009.
    [4] 庄钊文, 肖顺平, 王雪松. 雷达极化信息处理及其应用[M]. 北京: 国防工业出版社, 1999.

    ZHUANG Zhaowen, XIAO Shunping, and WANG Xuesong. Radar Polarization Information Processing and Application[M] Beijing: National Defense Industry Press, 1999.
    [5] FREY O and MEIER E. Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3648–3659. doi: 10.1109/TGRS.2011.2125972
    [6] GUILLASO S, FERRO-FAMIL L, REIGBER A, et al. Building characterization using L-band polarimetric interferometric SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3): 347–351. doi: 10.1109/LGRS.2005.851543
    [7] PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170–6196. doi: 10.1109/TGRS.2016.2582959
    [8] 丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
    [9] FENG Dong, AN Daoxiang, HUANG Xiaotao, et al. A phase calibration method based on phase gradient autofocus for airborne holographic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1864–1868. doi: 10.1109/LGRS.2019.2911932
    [10] SUN Dou, XING Shiqi, LI Yongzhen, et al. Sub-aperture partitioning method for three-dimensional wide-angle synthetic aperture radar imaging with non-uniform sampling[J]. Electronics, 2019, 8(6): 629. doi: 10.3390/electronics8060629
    [11] XING Shiqi, LI Yongzhen, DAI Dahai, et al. Three-dimensional reconstruction of man-made objects using polarimetric tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3694–3705. doi: 10.1109/TGRS.2012.2220145
    [12] AUSTIN C D, ERTIN E, and MOSES R L. Sparse signal methods for 3-D radar imaging[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 408–423. doi: 10.1109/JSTSP.2010.2090128
    [13] SUN Dou, PANG Bo, XING Shiqi, et al. Direct 3-D sparse imaging using non-uniform samples without data interpolation[J]. Electronics, 2020, 9(2): 321. doi: 10.3390/electronics9020321
    [14] ERTIN E, MOSES R L, and POTTER L C. Interferometric methods for three-dimensional target reconstruction with multipass circular SAR[J]. IET Radar, Sonar & Navigation, 2010, 4(3): 464–473.
    [15] HU Xiaowei, TONG Ningning, GUO Yiduo, et al. MIMO radar 3-D imaging based on multi-dimensional sparse recovery and signal support prior information[J]. IEEE Sensors Journal, 2018, 18(8): 3152–3162. doi: 10.1109/JSEN.2018.2810705
    [16] NANNINI M, SCHEIBER R, HORN R, et al. First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 60–64. doi: 10.1109/LGRS.2011.2160329
    [17] NANNINI M, SCHEIBER R, and HORN R. Imaging of targets beneath foliage with SAR tomography[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1–4.
    [18] SAUER S, FERRO-FAMIL L, REIGBER A, et al. Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4616–4629. doi: 10.1109/TGRS.2011.2147321
    [19] NGUYEN N H, BERRY P, and TRAN H T. Compressive sensing for tomographic imaging of a target with a narrowband bistatic radar[J]. Sensors, 2019, 19(24): 5515. doi: 10.3390/s19245515
    [20] ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183
    [21] CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
    [22] CAMERON W L and LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]. Proceedings of IEEE International Conference on Radar, Arlington, USA, 1990: 549–557.
    [23] 阙肖峰, 聂在平, 胡俊. 混合场积分方程结合MLFMA分析导体介质复合目标电磁散射问题[J]. 电子学报, 2007, 35(11): 2062–2066. doi: 10.3321/j.issn:0372-2112.2007.11.006

    QUE Xiaofeng, NIE Zaiping, and HU Jun. Analysis of EM scattering by composite conducting and dielectric object using combined field integral equation with MLFMA[J]. Acta Electronica Sinica, 2007, 35(11): 2062–2066. doi: 10.3321/j.issn:0372-2112.2007.11.006
  • 期刊类型引用(1)

    1. 褚丽娜,郭利,马彦恒,史源平,梁文博. 小型旋翼无人机载圆周SAR成像研究综述. 兵器装备工程学报. 2025(02): 303-316 . 百度学术

    其他类型引用(1)

  • 加载中
图(8) / 表(7)
计量
  • 文章访问数: 2723
  • HTML全文浏览量: 780
  • PDF下载量: 226
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2020-09-24
  • 网络出版日期:  2020-10-28

目录

    /

    返回文章
    返回