全息合成孔径雷达的概念、体制和方法

丁赤飚 仇晓兰 吴一戎

丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063
引用本文: 丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063
DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
Citation: DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063

全息合成孔径雷达的概念、体制和方法

doi: 10.12000/JR20063
基金项目: 国家自然科学基金重大项目(61991420, 61991421, 61991424)
详细信息
    作者简介:

    丁赤飚(1969–),男,研究员,博士生导师,现任中国科学院空天信息创新研究院副院长,主要从事合成孔径雷达、遥感信息处理和应用系统等领域的研究工作,先后主持多项国家863重点项目和国家级遥感卫星地面系统工程建设等项目,曾获国家科技进步一等奖、二等奖,国家发明二等奖等奖励。E-mail: cbding@mail.ie.ac.cn

    仇晓兰(1982–),女,中国科学院空天信息创新研究院研究员,博士生导师,主要研究领域为SAR成像处理、SAR图像理解,IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委。E-mail: xlqiu@mail.ie.ac.cn

    吴一戎(1963–),男,中国科学院院士,研究员,博士生导师,现任中国科学院空天信息创新研究院院长,主要研究方向为多维度SAR系统技术、稀疏微波成像技术、遥感卫星地面处理与应用系统技术等

    通讯作者:

    丁赤飚 cbding@mail.ie.ac.cn

    仇晓兰 xlqiu@mail.ie.ac.cn

  • 责任主编:杨建宇 Corresponding Editor: YANG Jianyu
  • 中图分类号: TN957.52

Concept, System, and Method of Holographic Synthetic Aperture Radar (in English)

Funds: The National Natural Science Foundation of China (NSFC)(61991420, 61991421, 61991424)
More Information
    Author Bio:

    DING chibiao(1969–), male, researcher, doctoral supervisor, is currently the vice president of the Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS). He is mainly engaged in the research of synthetic aperture radar, remote sensing information processing and application system, and has successively presided over a number of national 863 key projects and national remote sensing satellite ground system engineering construction projects. He has won the first and second prizes of National Science and Technology Progress Prize, second prize of National Invention Award. E-mail: cbding@mail.ie.ac.cn

    QIU Xiaolan(1982–), female, researcher, and doctoral supervisor of the the Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS). Her main research fields are SAR imaging processing and SAR image understanding. She is a senior member of IEEE, associate editor of IEEE Geosciences and Remote Sensing Letters, and young editorial board member of Journal of Radars.E-mail: xlqiu@mail.ie.ac.cn

    WU Yirong(1963–), male, Academician of Chinese Academy of Sciences. He is a researcher and doctoral supervisor of the Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS), and is currently the president of the AIRCAS. His main research interests are multi-dimensional SAR system technology, sparse microwave imaging technology, remote sensing satellite ground processing and application system technology, etc

    Corresponding author: DING Chibiao, cbding@mail.ie.ac.cnQIU Xiaolan, xlqiu@mail.ie.ac.cn
  • 摘要: 合成孔径雷达技术经历了二维SAR、二维半SAR(InSAR)、三维SAR,已发展到如今的多维度SAR,取得了巨大的技术成就。该文在简要总结合成孔径雷达及其成像技术发展历程的基础上,提出了全息合成孔径雷达的概念并首次给出了明确的定义,指出该定义与现有全息雷达、多基线圆迹SAR、多维度SAR等概念的区别与联系。并且基于现有多维度SAR模型框架,给出了全息SAR的成像体制和信号模型,提出了初步的成像思路,为全息SAR技术的发展提供了初步的理论和技术框架基础。

     

  • 图  1  反射全息照相技术原理示意图

    Figure  1.  Schematic diagram of reflection holography

    图  2  典型的全息SAR系统体制

    Figure  2.  Typical holographic SAR system

    图  3  双站SAR成像示意图

    Figure  3.  Schematic diagram of bistatic SAR imaging

    图  1  Schematic of reflection holography

    图  2  Typical holographic SAR system

    图  3  Schematic of bistatic SAR imaging

    表  1  简缩全息SAR体制示例

    Table  1.   Examples of compact holographic SAR system

    系统体制 观测度数 多维度数
    频率 极化 入射角 散射角 时相
    俯仰角 方位角 俯仰角 方位角
    单波段全极化阵列干涉SAR多航过 1 4(完备) / / 1 1 K 2
    单波段全极化圆迹层析3D-SAR 1 4(完备) / / 1 N(完备) 1 2
    多波段全极化阵列干涉3D-SAR K 4(完备) / / 1 1 1 2
    多波段全极化层析3D-SAR K 4(完备) / / 1 1 1 2
    单全极化层析4D-SAR 1 4(完备) / / 1 1 K 2
    全波段相参全极化层析3D-SAR M(完备) 4(完备) / / 1 1 1 2
    全波段相参全极化圆迹层析3D-SAR M(完备) 4(完备) / / 1 N(完备) 1 3
    全波段相参全极化圆迹层析4D-SAR M(完备) 4(完备) / / 1 N(完备) K 4
    单波段分布式多发多收全极化3D-SAR 1 4(完备) K1 K2 K3 K4 1 3
    多波段分布式多发多收全极化3D-SAR K 4(完备) K1 K2 K3 K4 1 4
    下载: 导出CSV

    表  1  Examples of compact holographic SAR system

    System Observation degree Number of Dimension
    Frequency Polarization Incident angle Scattering angle Time
    phase
    Elevation
    angle
    Azimuth
    angle
    Elevation
    angle
    Azimuth
    angle
    Single-band full-polarization array interferometric multipass SAR 1 4(complete) / / 1 1 K 2
    Single-band full-polarization circular tomographic 3D-SAR 1 4(complete) / / 1 N(complete) 1 2
    Multi-band full-polarization array interferometric 3D-SAR K 4(complete) / / 1 1 1 2
    Multi-band full-polarization tomographic 3D-SAR K 4(complete) / / 1 1 1 2
    Single-band full-polarization tomographic 4D-SAR 1 4(complete) / / 1 1 K 2
    Multi-band coherent full-polarization tomographic 3D-SAR M(complete) 4(complete) / / 1 1 1 2
    Multi-band coherent full-polarization circular tomographic 3D-SAR M(complete) 4(complete) / / 1 N(complete) 1 3
    Multi-band coherent full-polarization circular tomographic 4D-SAR M(complete) 4(complete) / / 1 N(complete) K 4
    Single-band distributed multiple-input multiple-output full-polarization 3D-SAR 1 4(complete) K1 K2 K3 K4 1 3
    Multi-band distributed multiple-input multiple-output full-polarization 3D-SAR K 4(complete) K1 K2 K3 K4 1 4
    下载: 导出CSV
  • [1] MOREIRA J, SCHWABISCH M, FORNARO G, et al. X-SAR interferometry: First results[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 950–956. doi: 10.1109/36.406681
    [2] GABRIEL A K and GOLDSTEIN R M. Crossed orbit interferometry: Theory and experimental results from SIR-B[J]. International Journal of Remote Sensing, 1988, 9(5): 857–872. doi: 10.1080/01431168808954901
    [3] WERNER M. Shuttle Radar Topography Mission (SRTM): Experience with the X-band SAR interferometer[C]. 2001 CIE International Conference on Radar, Beijing, China, 2001: 634-638. doi: 10.1109/ICR.2001.984798.
    [4] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277.

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277.
    [5] HAN Bing, DING Chibiao, ZHONG Lihua, et al. The GF-3 SAR data processor[J]. Sensors, 2018, 18(3): 835. doi: 10.3390/s18030835
    [6] 袁新哲, 林明森, 刘建强, 等. 高分三号卫星在海洋领域的应用[J]. 卫星应用, 2018, (6): 17–21.

    YUAN Xinzhe, LIN Mingsen, LIU Jianqiang, et al. Application of CF-3 satellite in the marine field[J]. Satellite Application, 2018(6): 17–21.
    [7] 杨建宇. 雷达对地成像技术多向演化趋势与规律分析[J]. 雷达学报, 2019, 8(6): 669–692. doi: 10.12000/JR19099

    YANG Jianyu. Multi-directional evolution trend and law analysis of radar ground imaging technology[J]. Journal of Radars, 2019, 8(6): 669–692. doi: 10.12000/JR19099
    [8] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047

    WU Yirong. Concept on multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
    [9] BOUSSO R. The holographic principle[J]. Reviews of Modern Physics, 2002, 74(3): 825–874. doi: 10.1103/RevModPhys.74.825
    [10] BYRD M J, JERSAK B D, KRENEK B D, et al. Demonstration of 3D microwave holography[C]. IGARSS’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 1994. doi: 10.1109/IGARSS.1994.399300.
    [11] BLANCHARD A J, WILLIAMS B, SCHINDEL R F, et al. Images of statistically distributed clutter targets made by the harc holographic imaging facility[C]. IGARSS’92 International Geoscience and Remote Sensing Symposium, Houston, USA, 1992. doi: 10.1109/IGARSS.1992.578298.
    [12] 林溪波. 航天微波全息雷达[J]. 上海航天, 1994, (2): 44–49.

    LIN Xibo. Space microwave holographic radar[J]. Shanghai Aerospace, 1994(2): 44–49.
    [13] KRZYSTOFIK W J. Microwave holography[C]. 13th International Conference on Microwaves, Radar and Wireless Communications, Wroclaw, Poland, 2000: 597–600. doi: 10.1109/MIKON.2000.914003.
    [14] IVASHOV S I, RAZEVIG V V, VASILIEV I A, et al. Holographic subsurface radar of RASCAN type: Development and applications[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(4): 763–778. doi: 10.1109/jstars.2011.2161755
    [15] ZHURAVLEV A V, IVASHOV S I, RAZEVIG V V, et al. Holographic subsurface radar RASCAN-5[C]. 2013 7th International Workshop on Advanced Ground Penetrating Radar, Nantes, France, 2013: 1–6. doi: 10.1109/IWAGPR.2013.6601548.
    [16] BORGIOLI G, BOSSI L, CAPINERI L, et al. A hologram reconstruction algorithm for landmine recognition and classification based on microwave holographic radar data[C].2018 Progress in Electromagnetics Research Symposium, Toyama, Japan, 2018: 1938–1944. doi: 10.23919/PIERS.2018.8597707.
    [17] PONCE O, PRATS P, SCHEIBER R, et al. Multibaseline 3-D circular SAR imaging at L-band[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012.
    [18] PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. Polarimetric 3-D reconstruction from multicircular SAR at P-band[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4): 803–807. doi: 10.1109/LGRS.2013.2279236
    [19] PONCE O, PRATS-IRAOLA P, SCHEIBER R, et al. First airborne demonstration of holographic SAR tomography with fully polarimetric multicircular acquisitions at L-Band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6170–6196. doi: 10.1109/tgrs.2016.2582959
    [20] 洪文. 圆迹SAR成像技术研究进展[J]. 雷达学报, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046

    HONG Wen. Progress in circular SAR imaging technique[J]. Journal of Radars, 2012, 1(2): 124–135. doi: 10.3724/SP.J.1300.2012.20046
    [21] 王本君. 圆周SAR三维成像技术研究[D]. [硕士论文], 电子科技大学, 2012: 20–41.

    WANG Benjun. Research on circular SAR 3-D imaging[D]. [Master dissertation], University of Electronic Science and Technology of China, 2012: 20–41.
    [22] 安道祥, 陈乐平, 冯东, 等. 机载圆周SAR成像技术研究[J]. 雷达学报, 2020, 9(2): 221–242. doi: 10.12000/JR20026

    AN Daoxiang, CHEN Leping, FENG Dong, et al. Study of the airborne circular synthetic aperture radar imaging technology[J]. Journal of Radars, 2020, 9(2): 221–242. doi: 10.12000/JR20026
    [23] BAO Qian, LIN Yun, HONG Wen, et al. Holographic SAR tomography image reconstruction by combination of adaptive imaging and sparse Bayesian inference[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1248–1251. doi: 10.1109/LGRS.2017.2704601
    [24] FENG Dong, AN Daoxiang, HUANG Xiaotao, et al. A phase calibration method based on phase gradient autofocus for airborne holographic SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1864–1868. doi: 10.1109/LGRS.2019.2911932
    [25] FENG Dong, AN Daoxiang, CHEN Leping, et al. Multicircular SAR 3-D imaging based on iterative adaptive approach[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019. doi: 10.1109/APSAR46974.2019.9048440.
    [26] 谭维贤. 合成孔径雷达三维成像理论与方法研究[D]. [博士论文], 中国科学院电子学研究所, 2009: 1–141.

    TAN Weixian. Study on theory and algorithms for three-dimensional synthetic aperture radar imaging[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2009: 1–141.
    [27] GABOR D. Microscopy by reconstructed wave fronts: Ⅱ[J]. Proceedings of the Physical Society, 1951, 64(6): 449–469. doi: 10.1088/0370-1301/64/6/301
    [28] THORN C B. Reformulating string theory with the 1/N expansion[C]. International A.D. Sakharov Conference on Physics, Moscow, Russia, 1991.
    [29] SUSSKIND L. The world as a hologram[J]. Journal of Mathematical Physics, 1995, 36(11): 6377–6396. doi: 10.1063/1.531249
    [30] 彭学明, 王彦平, 谭维贤, 等. 基于跨航向稀疏阵列的机载下视MIMO 3D-SAR三维成像算法[J]. 电子与信息学报, 2012, 34(4): 943–949. doi: 10.3724/SP.J.1146.2011.00720

    PENG Xueming, WANG Yanping, TAN Weixian, et al. Airborne downward-looking MIMO 3D-SAR imaging algorithm based on cross-track thinned array[J]. Journal of Electronics&Information Technology, 2012, 34(4): 943–949. doi: 10.3724/SP.J.1146.2011.00720
    [31] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [32] ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1 -norm regularization—the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
    [33] FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/tgrs.2005.843567
    [34] FORNARO G, REALE D, and SERAFINO F. Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 224–237. doi: 10.1109/TGRS.2008.2000837
    [35] LOMBARDINI F and VIVIANI F. New developments of 4D+ differential SAR tomography to probe complex dynamic scenes[C]. 2014 IEEE International Geoscience and Remote Sensing, Quebec City, Canada, 2014. doi: 10.1109/IGARSS.2014.6947201
    [36] 陈晨, 魏中浩, 徐志林, 等. 基于高斯字典原子稀疏表示的高精度宽角SAR成像方法[J]. 系统工程与电子技术, 2019, 41(11): 2471–2478. doi: 10.3969/j.issn.1001-506X.2019.11.10

    CHEN Chen, WEI Zhonghao, XU Zhilin, et al. High-precision wide angle SAR imaging method based on sparse representation of Gaussian dictionary atoms[J]. Systems Engineering and Electronics, 2019, 41(11): 2471–2478. doi: 10.3969/j.issn.1001-506X.2019.11.10
    [37] 洪文. 基于混合极化架构的极化SAR: 原理与应用[J]. 雷达学报, 2016, 5(6): 559–595. doi: 10.12000/JR16074

    HONG Wen. Hybrid-polarity architecture based polarimetric SAR: Principles and applications[J]. Journal of Radars, 2016, 5(6): 559–595. doi: 10.12000/JR16074
    [38] 陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205–220. doi: 10.12000/JR20015

    CHEN Jie, YANG Wei, WANG Pengbo, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205–220. doi: 10.12000/JR20015
    [39] 吴一戎, 洪文, 张冰尘. 稀疏微波成像导论[M]. 北京: 科学出版社, 2018: 38–41.

    WU Yirong, HONG Wen, and ZHANG Bingchen. Introduction to Sparse Microwave Imaging[M]. Beijing: Science Press, 2018: 38–41.
    [40] 焦泽坤. 稀疏阵列雷达空间目标三维成像技术[D]. [博士论文], 中国科学院大学, 2019: 17–46.

    JIAO Zekun. 3D imaging technology of sparse array radar space target[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2019: 17–46.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  5822
  • HTML全文浏览量:  3291
  • PDF下载量:  918
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-16
  • 修回日期:  2020-05-28
  • 网络出版日期:  2020-06-01

目录

    /

    返回文章
    返回