近场非圆信号参数快速估计算法

宋嘉奇 陶海红

宋嘉奇, 陶海红. 近场非圆信号参数快速估计算法[J]. 雷达学报, 2020, 9(4): 632–639. doi: 10.12000/JR20053
引用本文: 宋嘉奇, 陶海红. 近场非圆信号参数快速估计算法[J]. 雷达学报, 2020, 9(4): 632–639. doi: 10.12000/JR20053
SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053

近场非圆信号参数快速估计算法

DOI: 10.12000/JR20053
基金项目: 国家自然科学基金(61971355),国家部委基金
详细信息
    作者简介:

    宋嘉奇(1992–),2013年于西安电子科技大学获工学学士学位,现为西安电子科技大学雷达信号处理国家重点实验室博士研究生,主要研究方向为阵列信号处理。E-mail: theo_song@163.com

    陶海红(1976–),女,西安电子科技大学教授,博士生导师,主要研究领域为雷达信号处理与检测、高速实时信号处理、阵列信号处理。E-mail: hhtao@xidian.edu.cn

    通讯作者:

    陶海红 hhtao@xidian.edu.cn

  • 责任主编:魏玺章 Corresponding Editor: WEI Xizhang
  • 中图分类号: TN911.7

A Fast Parameter Estimation Algorithm for Near-field Non-circular Signals

Funds: The National Natural Science Foundation of China (61971355), The National Ministries Foundation
More Information
  • 摘要: 该文基于对称的均匀线阵提出了一种近场非圆信号参数的快速估计算法,算法基于信号的非圆特性以及阵列的对称性对近场导向矢量进行解耦,并利用多项式求根取代传统的谱峰搜索对近场源的角度及距离参数进行快速估计。基于给定的阵列结构,建立非圆信号参数估计的多项式数学模型,然后对其进行求根即可获得近场信号源位置参数。所提算法采用多项式求根的方法有效地降低了运算复杂度,同时利用信号的非圆特性提高了参数估计的自由度(DOF)。通过性能分析和计算机仿真实验可以看出该算法能够分辨更多的近场非圆信号,并且参数估计性能有所提升,更接近于近场源参数估计的克拉美罗界(CRB)。

     

  • 图  1  近场参数估计示意图

    Figure  1.  Schematic diagram of near-field parameter estimation

    图  2  RMSE-信噪比曲线图

    Figure  2.  RMSE-signal to noise ratio curve

    图  3  RMSE-快拍数曲线图

    Figure  3.  RMSE-snapshots curve

    图  4  三种算法的运算时间比较

    Figure  4.  Comparison of operation time of three algorithms

    表  1  矩阵M中的元素

    Table  1.   Elements of matrix M

    元素位置表达式元素位置表达式
    ${m_{11}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{L} }({ {{u} }_i},{ {{u} }_j}){z^{ { {{u} }_i} - { {{u} }_j} } } } }$${m_{12}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{L} }({ {{u} }_i},{ {{v} }_j}){z^{ { {{u} }_i} - { {{v} }_j} } } } }$
    ${m_{13}}(z)$$\displaystyle\sum \nolimits_i { {{S} }({ {{u} }_i},{ {{u} }_i}){z^{2{ {{u} }_i} - 4} } + } \underbrace {\displaystyle\sum \nolimits\nolimits_i {\displaystyle\sum \nolimits\nolimits_j { {{S} }({ {{u} }_i},{ {{u} }_j})} } }_{i \ne j}$${m_{14}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{S} }({ {{u} }_i},{ {{v} }_j})} } {z^{ { {{u} }_i} - { {{v} }_j} } }$
    ${m_{21}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{L} }({ {{v} }_i},{ {{u} }_j}){z^{ { {{v} }_i} - { {{u} }_j} } } } }$${m_{22}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{L} }({ {{v} }_i},{ {{v} }_j}){z^{ { {{v} }_i} - { {{v} }_j} } } } }$
    ${m_{23}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{S} }({ {{v} }_i},{ {{u} }_j}){z^{ - { {{v} }_i} + { {{u} }_j} } } } }$${m_{24}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{S} }({ {{v} }_i},{ {{v} }_j}){z^{ { {{v} }_i} - { {{v} }_j} } } } }$
    ${m_{31}}(z)$$\displaystyle\sum \nolimits_i { {{Y} }({ {{u} }_i},{ {{u} }_i}){z^{ - 2{ {{u} }_i} + 4} } + } \underbrace {\displaystyle\sum \nolimits\nolimits_i {\displaystyle\sum \nolimits\nolimits_j { {{Y} }({ {{u} }_i},{ {{u} }_j})} } }_{i \ne j}$${m_{32}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{Y} }({ {{u} }_i},{ {{v} }_j}){z^{ - { {{u} }_i} + { {{v} }_j} } } } }$
    ${m_{33}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{W} }({ {{u} }_i},{ {{u} }_j}){z^{ - { {{u} }_i} + { {{u} }_j} } } } }$${m_{34}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{W} }({ {{u} }_i},{ {{v} }_j}){z^{ - { {{u} }_i} + { {{v} }_j} } } } }$
    ${m_{41}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{Y} }({ {{v} }_i},{ {{u} }_j})} } {z^{ { {{v} }_i} - { {{u} }_j} } }$${m_{42}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{Y} }({ {{v} }_i},{ {{v} }_j}){z^{ { {{v} }_i} - { {{v} }_j} } } } }$
    ${m_{43}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{W} }({ {{v} }_i},{ {{u} }_j}){z^{ - { {{v} }_i} + { {{u} }_j} } } } }$${m_{44}}(z)$$\displaystyle\sum \nolimits_i {\displaystyle\sum \nolimits_j { {{W} }({ {{v} }_i},{ {{v} }_j}){z^{ { {{v} }_i} - { {{v} }_j} } } } }$
    下载: 导出CSV

    表  2  算法运算复杂度比较

    Table  2.   Algorithm complexity comparison

    算法统计量矩阵特征值分解谱峰搜索
    GESPRIT$O(2{N^2}/L)$$8{N^3}/3$$K{N^2}/{\Delta _r}({R_{\max } } - {R_{\min } }) + 360{N^2}/{\Delta _\theta }$
    NCGESPRIT$O(4{N^2}/L)$$32{N^3}/3$$4K{N^2}/{\Delta _r}({R_{\max } } - {R_{\min } }) + 720{N^2}/{\Delta _\theta }$
    本文算法$O(4{N^2}/L)$$32{N^3}/3$
    下载: 导出CSV
  • [1] JOHNSON R C. Antenna Engineering Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 1993: 36–39.
    [2] HUANG Y D and BARKAT M. Near-field multiple source localization by passive sensor array[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(7): 968–975. doi: 10.1109/8.86917
    [3] CHALLA R N and SHAMSUNDER S. High-order subspace-based algorithms for passive localization of near-field sources[C]. The 29th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1995: 777–781. doi: 10.1109/ACSSC.1995.540806.
    [4] ZHI Wanjun and CHIA M Y W. Near-field source localization via symmetric subarrays[J]. IEEE Signal Processing Letters, 2007, 14(6): 409–412. doi: 10.1109/LSP.2006.888390
    [5] XIE Jian, TAO Haihong, RAO Xuan, et al. Comments on “near-field source localization via symmetric subarrays”[J]. IEEE Signal Processing Letters, 2015, 22(5): 643–644. doi: 10.1109/LSP.2014.2364174
    [6] CHARGÉ P, WANG Yide, and SAILLARD J. A non-circular sources direction finding method using polynomial rooting[J]. Signal Processing, 2001, 81(8): 1765–1770. doi: 10.1016/S0165-1684(01)00071-8
    [7] SHEN Lei, LIU Zhiwen, and XU Yougen. Parameter estimation of rectilinear signals using multiple noncollocated and diversely polarized antennas[C]. 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059546.
    [8] XIE Jian, TAO Haihong, RAO Xuan, et al. Real-valued localisation algorithm for near-field non-circular sources[J]. Electronics Letters, 2015, 51(17): 1330–1331. doi: 10.1049/el.2015.0454
    [9] XIE Jian, TAO Haihong, RAO Xuan, et al. Passive localization of noncircular sources in the near-field[C]. 2015 16th International Radar Symposium (IRS), Dresden, Germany, 2015: 493–498. doi: 10.1109/IRS.2015.7226309.
    [10] XIE Jian, TAO Haihong, RAO Xuan, et al. Efficient method of passive localization for near-field noncircular sources[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1223–1226. doi: 10.1109/LAWP.2015.2399534
    [11] KUANG Meidong, WANG Ling, XIE Jian, et al. Real-valued near-field localization of partially polarized noncircular sources with a cross-dipole array[J]. IEEE Access, 2019, 7: 36623–36632. doi: 10.1109/ACCESS.2019.2904837
    [12] CHEN Hua, LI Youming, ZHU Weiping, et al. Joint DOA and range estimation for mixed near-field and far-field strictly noncircular sources[C]. 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018: 1–5. doi: 10.1109/ICDSP.2018.8631547.
    [13] CHEN Hua, LIU Wei, ZHU Weiping, et al. Noncircularity-based localization for mixed near-field and far-field sources with unknown mutual coupling[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, Canada, 2018: 3236–3240. doi: 10.1109/ICASSP.2018.8462266.
    [14] FERREOL A, BOYER E, and LARZABAL P. Low-cost algorithm for some bearing estimation methods in presence of separable nuisance parameters[J]. Electronics Letters, 2004, 40(15): 966–967. doi: 10.1049/el:20040537
    [15] STOICA P, LARSSON E G, and GERSHMAN A B. The stochastic CRB for array processing: A textbook derivation[J]. IEEE Signal Processing Letters, 2001, 8(5): 148–150. doi: 10.1109/97.917699
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1762
  • HTML全文浏览量:  643
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 修回日期:  2020-07-17
  • 网络出版日期:  2020-08-28

目录

    /

    返回文章
    返回