一种基于信息积累的外辐射源目标检测方法

李波 岑宗骏 汤俊

李波, 岑宗骏, 汤俊. 一种基于信息积累的外辐射源目标检测方法[J]. 雷达学报, 2020, 9(6): 959–966. doi: 10.12000/JR20023
引用本文: 李波, 岑宗骏, 汤俊. 一种基于信息积累的外辐射源目标检测方法[J]. 雷达学报, 2020, 9(6): 959–966. doi: 10.12000/JR20023
LI Bo, CEN Zongjun, and TANG Jun. A new method of target detection for passive radar based on information accumulation[J]. Journal of Radars, 2020, 9(6): 959–966. doi: 10.12000/JR20023
Citation: LI Bo, CEN Zongjun, and TANG Jun. A new method of target detection for passive radar based on information accumulation[J]. Journal of Radars, 2020, 9(6): 959–966. doi: 10.12000/JR20023

一种基于信息积累的外辐射源目标检测方法

DOI: 10.12000/JR20023
基金项目: 国家部委专项项目(19-163-11-ZD-019-006-02)
详细信息
    作者简介:

    李 波(1996–),男,广西陆川人,清华大学电子工程系在读硕士生,研究方向为外辐射源信号处理、弱目标检测等。E-mail: lib17@mails.tsinghua.edu.cn

    岑宗骏(1995–),男,广西北流人,清华大学电子工程系在读博士生,研究方向为阵列信号处理、软件化雷达等。E-mail: cenzhongjun123@163.com

    汤 俊(1973–),男,江苏南京人,博士,教授,2000年在清华大学电子工程系获得博士学位,现为清华大学电子工程系教授,研究方向为阵列信号处理、软件化雷达等,目前发表文章百余篇。E-mail: tangj_ee@tsinghua.edu.cn

    通讯作者:

    汤俊 tangj_ee@tsinghua.edu.cn

  • 责任主编:万显荣 Corresponding Editor: WAN Xianrong
  • 中图分类号: TN958

A New Method of Target Detection for Passive Radar Based on Information Accumulation

Funds: The National Ministry Foundation of China (19-163-11-ZD-019-006-02)
More Information
  • 摘要: 外辐射源雷达系统反隐身性能强、隐蔽性好、生存能力强,在军用和民用领域都具有十分广阔的应用场景。为了有效地对低信噪比的弱目标进行检测,并且同时满足系统的实时性需求,该文针对外辐射源雷达系统的特点,依据检测前跟踪算法的思想,提出一种基于信息积累的外辐射源雷达系统目标检测方法。该方法首先将目标状态空间离散格点化,然后利用递推贝叶斯滤波的思想在多帧观测数据之间进行目标状态信息的传递和积累,最后利用信息熵作为判决目标是否存在的条件,避免了对目标存在和目标不存在两种状态之间转移概率模型的先验假设,是一种实现简单、计算复杂度低、可并行度高的目标检测方法。实验结果表明,该方法不仅运行时间短,实时性能强,而且具有良好的检测性能和一定的鲁棒性。

     

  • 图  1  外辐射源雷达工作场景示意图

    Figure  1.  Working principle for passive radar

    图  2  调频广播信号模糊函数

    Figure  2.  The ambiguity function of FM broadcast signal

    图  3  虚警概率随判决门限变化曲线

    Figure  3.  Relationship of the probability of false alarm and threshold

    图  4  目标检测概率随信噪比的变化曲线

    Figure  4.  Relationship of the probability of target detection and SNR

    图  5  目标位置估计的均方根误差随信噪比的变化曲线

    Figure  5.  Relationship of the RMSE and SNR

    图  6  目标检测概率随信噪比的变化曲线

    Figure  6.  Relationship of the probability of target detection and SNR

    图  7  目标位置估计的均方根误差随信噪比的变化曲线

    Figure  7.  Relationship of the RMSE and SNR

    图  8  信息熵随时间变化曲线

    Figure  8.  Relationship of the information entropy and time

    图  9  目标距离的估计结果

    Figure  9.  The results of the estimated target range

    图  10  目标多普勒频移的估计结果

    Figure  10.  The results of the estimated target Doppler frequency

    表  1  基于信息积累的目标检测方法

    Table  1.   The method of target detection based on information accumulation

    初始化:
       $p\left( { { {{x} }_0} } \right) = \displaystyle\sum\limits_{i = 0}^{I - 1} {\displaystyle\sum\limits_{j = 0}^{J - 1} {\frac{1}{ {IJ} } } } \delta \left( { { {{x} }_0} - {x^{i,j} } } \right) \qquad $

      ${H_0} = - \displaystyle\sum\limits_{i = 0}^{I - 1} {\displaystyle\sum\limits_{j = 0}^{J - 1} {w_{0|0}^{i,j} } } {\log _2}\left( {w_{0|0}^{i,j} } \right) = {\log _2}(IJ)$
    对于时刻$k = 1,2,3, ··· ,K$:
      获得观测值${ {{z} }_k}$,信息传递矩阵${{ T}_k}$,似然函数$\mathcal{L}\left( {{{{z}}_k}|{{{x}}_k}} \right)$。
      预测步,根据式(17)、式(18)预测概率密度函数$p\left( { { {{x} }_k}|{ {{z} }_{1:k - 1} } } \right)$。
      更新步,根据式(24)、式(25)更新概率密度函数$p\left( {{{{x}}_k}|{{{z}}_{1:k}}} \right)$。
      根据式(26)计算信息熵${H_k}$。
      根据${H_k}$进行目标检测,如果${H_k} < {H_{{\rm{thr}}}}$,判定目标存在,目标
      状态${{{x}}_k} = \arg {\max _{(i,j)}}w_{k|k}^{i,j}$;
      如果${H_k} \ge {H_{ {\rm{thr} } } }$,判定目标不存在。
    下载: 导出CSV

    表  2  多种目标检测算法的运行时间对比

    Table  2.   Comparison of running time among multiple target detection algorithms

    算法本文算法离散格点贝叶斯滤波动态规划粒子滤波CA-CFAR
    单帧运行时间(s)0.0160.0181.2001.1020.003
    下载: 导出CSV
  • [1] GRIFFITHS H D and BAKER C J. An Introduction to Passive Radar[M]. Boston, US: Artech House, 2017: 1–25.
    [2] WILLIS N J. Bistatic Radar[M]. Raleigh, US: SciTech Publishing, 2005: 15–57.
    [3] KULPA K and MALANOWSKI M. From Klein Heidelberg to modern multistatic passive radar[C]. The 2019 20th International Radar Symposium (IRS), Ulm, Germany, 2019: 1–9. doi: 10.23919/IRS.2019.8768176.
    [4] 何友, 关键, 孟祥伟, 等. 雷达目标检测与恒虚警处理[M]. 2版. 北京: 清华大学出版社, 2011: 36–40.

    HE You, GUAN Jian, MENG Xiangwei, et al. Radar Target Detection and CFAR Processing[M]. 2nd ed. Beijing: Tsinghua University Press, 2011: 36–40.
    [5] CARLSON B D, EVANS E D, and WILSON S L. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410
    [6] BARNIV Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES–21(1): 144–156. doi: 10.1109/TAES.1985.310548
    [7] YI Wei, JIANG Haichao, KIRUBARAJAN T, et al. Track-before-detect strategies for radar detection in G0-distributed clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2516–2533. doi: 10.1109/TAES.2017.2702259
    [8] SALMOND D J and BIRCH H. A particle filter for track-before-detect[C]. 2001 American Control Conference, Arlington, USA, 2001: 3755–3760. doi: 10.1109/ACC.2001.946220.
    [9] RUTTEN M G, GORDON N J, and MASKELL S. Recursive track-before-detect with target amplitude fluctuations[J]. IEE Proceedings-Radar, Sonar and Navigation, 2005, 152(5): 345–352. doi: 10.1049/ip-rsn:20045041
    [10] RUTTEN M G, GORDON N J, and MASKELL S. Efficient particle-based track-before-detect in Rayleigh noise[C]. The 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 693–700.
    [11] JISHY K and LEHMANN F. A Bayesian track-before-detect procedure for passive radars[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 45. doi: 10.1186/1687-6180-2013-45
    [12] ROLLASON M and SALMOND D. Particle filter for track-before-detect of a target with unknown amplitude viewed against a structured scene[J]. IET Radar, Sonar & Navigation, 2018, 12(6): 603–609. doi: 10.1049/iet-rsn.2017.0483
    [13] STONE L D, CORWIN T L, and BARLOW C A. Bayesian Multiple Target Tracking[M]. Boston, US: Artech House, 2013: 65–77.
    [14] ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374
    [15] MAHAFZA B R. Introduction to Radar Analysis[M]. Boca Raton, US: CRC Press, 1998: 267–287.
    [16] DAVEY S J, RUTTEN M G, and CHEUNG B. A comparison of detection performance for several track-before-detect algorithms[J]. EURASIP Journal on Advances in Signal Processing, 2007, 2008(1): 428036. doi: 10.1155/2008/428036
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  3439
  • HTML全文浏览量:  950
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-23
  • 修回日期:  2020-05-22
  • 网络出版日期:  2020-12-28

目录

    /

    返回文章
    返回