基于多快拍图像联合的MIMO雷达三维成像方法

郑通 蒋李兵 王壮

郑通, 蒋李兵, 王壮. 基于多快拍图像联合的MIMO雷达三维成像方法[J]. 雷达学报, 2020, 9(4): 739–752. doi: 10.12000/JR19069
引用本文: 郑通, 蒋李兵, 王壮. 基于多快拍图像联合的MIMO雷达三维成像方法[J]. 雷达学报, 2020, 9(4): 739–752. doi: 10.12000/JR19069
ZHENG Tong, JIANG Libing, and WANG Zhuang. Three-dimensional multiple-input multiple-output radar imaging method based on integration of multi-snapshot images[J]. Journal of Radars, 2020, 9(4): 739–752. doi: 10.12000/JR19069
Citation: ZHENG Tong, JIANG Libing, and WANG Zhuang. Three-dimensional multiple-input multiple-output radar imaging method based on integration of multi-snapshot images[J]. Journal of Radars, 2020, 9(4): 739–752. doi: 10.12000/JR19069

基于多快拍图像联合的MIMO雷达三维成像方法

doi: 10.12000/JR19069
基金项目: 国家部委基金,国防科技重点实验室基金(6142503180202)
详细信息
    作者简介:

    郑 通(1995–),女,云南瑞丽人。2017年在国防科技大学获得学士学位,现在国防科技大学自动目标识别重点实验室攻读硕士研究生,主要研究方向为雷达信息处理与目标识别技术。E-mail: zerothousand_zt@163.com

    蒋李兵(1982–),男,江苏启东人。2014年在国防科技大学获得博士学位,现任国防科技大学电子科学学院自动目标识别重点实验室讲师,主要研究方向为电磁散射建模、微波成像和雷达图像解译。Email: jianglibing@nudt.edu.cn

    王 壮(1973–),男,陕西西安人。2001年在国防科技大学获得博士学位,现任国防科技大学自动目标识别重点实验室教授,博士生导师,主要研究方向为雷达信息处理、空间目标监视、目标识别。Email: zhuang_wang@sina.com

    通讯作者:

    王壮 zhuang_wang@sina.com

  • 责任主编:许小剑 Corresponding Editor: XU Xiaojian
  • 中图分类号: TN95

Three-dimensional Multiple-Input Multiple-Output Radar Imaging Method Based on Integration of Multi-snapshot Images

Funds: The National Ministries Foundation, The Key Laboratory Foundation of National Defense Science and Technology (6142503180202)
More Information
  • 摘要:

    为了提高多输入多输出(MIMO)雷达三维成像沿运动方向的方位分辨率,该文从多快拍图像联合利用的角度入手,提出一种新的多输入多输出-逆合成孔径雷达(MIMO-ISAR)三维成像方法。其基本思路是通过对一段时间观测下二维平面阵列获取的多个单快拍三维图像进行相干处理,沿着散射点线性拟合的方向提取峰值并重构出新的三维图像。仿真实验结果表明,与单快拍三维成像方法相比,该方法可以显著提高成像结果沿运动方向的方位分辨率;与现有基于重排和插值的经典MIMO-ISAR方法相比,该方法对慢速和快速运动目标均适用,得到的成像结果聚焦良好并能够有效抑制沿运动方向的旁瓣。

     

  • 图  1  MIMO雷达和目标的几何结构

    Figure  1.  Geometry of MIMO radar and target

    图  2  MIMO雷达天线阵元排布示意图

    Figure  2.  Configuration of the MIMO radar system

    图  3  回波一维距离像示意图

    Figure  3.  Range profiles of echo signal

    图  4  10个快拍包络对齐后的回波示意图

    Figure  4.  Range profiles of 10 snapshots after envelope alignment

    图  5  多快拍图像联合三维成像的流程示意图

    Figure  5.  Flowchart of the 3-D imaging algorithm based on multi-snapshot images integration

    图  6  本文方法对散射点PSF分布的影响

    Figure  6.  The effect of the proposed method on the PSF of the scatterer

    图  7  目标运动速度的方向余弦信息示意图

    Figure  7.  The direction cosine information of the target’s velocity

    图  8  “云影”无人机仿真模型三维立体图及3视图

    Figure  8.  Three different projections and 3-D view of YunYing model

    图  9  不同$\gamma $角下的多普勒线性拟合结果

    Figure  9.  The Doppler linear fitting results with different $\gamma $ angles

    图  10  角速度估计的鲁棒性

    Figure  10.  Estimation of $\omega $ with different SNR

    图  11  单快拍三维成像结果

    Figure  11.  3-D imaging results with one-snapshot signal

    图  12  本文方法对慢速目标三维成像结果

    Figure  12.  3-D imaging results of the slow target by the proposed method

    图  13  经典插值方法对慢速目标三维成像结果

    Figure  13.  3-D imaging results of the slow target by the classical interpolation method

    图  14  本文方法对快速目标三维成像结果

    Figure  14.  3-D imaging results of the fast target by the proposed method

    15  经典插值方法对快速目标三维成像结果

    15.  3-D imaging results of the fast target by the classical interpolation method

    表  1  雷达参数

    Table  1.   Configuration parameters of the radar system

    具体参数数值具体参数数值
    载频${f_c}$10 GHz带宽B400 MHz
    脉冲重复频率PRF20 Hz脉冲宽度${T_{\rm{r}}}$0.32 μs
    码元周期${T_{{\rm{rs}}}}$2.5 ns码元长度${N_{{\rm{pcm}}}}$128
    下载: 导出CSV

    表  2  目标参数

    Table  2.   Configuration parameters of the target

    具体参数数值具体参数数值
    散射点个数11机身长度9.05 m
    机翼宽度17.8 m相对雷达距离12 km
    飞行速度100~620 km/hLOS方向${{{n}}_{\rm{0}}} = \left( { - 0.15,0.10,0.98} \right)$
    速度方向$\gamma $60°速度方向$\beta $80°
    下载: 导出CSV
  • [1] DING Shanshan, TONG Ningning, ZHANG Yongshun, et al. Super-resolution 3D imaging in MIMO radar using spectrum estimation theory[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 304–312. doi: 10.1049/iet-rsn.2016.0233
    [2] DUAN Guangqing, WANG Dangwei, MA Xiaoyan, et al. Three-dimensional imaging via wideband MIMO radar system[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3): 445–449. doi: 10.1109/LGRS.2009.2038728
    [3] ZHAO Jia, ZHANG Min, WANG Xin, et al. Three-dimensional super resolution ISAR imaging based on 2D unitary ESPRIT scattering centre extraction technique[J]. IET Radar, Sonar & Navigation, 2017, 11(1): 98–106. doi: 10.1049/iet-rsn.2016.0049
    [4] 周子铂, 蒋李兵, 王壮. 一种基于波程差补偿的InISAR图像配准方法[J]. 雷达学报, 2018, 7(6): 758–769. doi: 10.12000/JR18070

    ZHOU Zibo, JIANG Libing, and WANG Zhuang. Image registration based on wave path difference compensation for InISAR[J]. Journal of Radars, 2018, 7(6): 758–769. doi: 10.12000/JR18070
    [5] BLEH D, RÖSCH M, KURI M, et al. W-band time-domain multiplexing FMCW MIMO radar for far-field 3-D imaging[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3474–3484. doi: 10.1109/TMTT.2017.2661742
    [6] MARKS D L, YURDUSEVEN O, and SMITH D R. Fourier accelerated multistatic imaging: A fast reconstruction algorithm for multiple-input-multiple-output radar imaging[J]. IEEE Access, 2017, 5: 1796–1809. doi: 10.1109/ACCESS.2017.2661068
    [7] CHENG Binbin, CUI Zhenmao, LU Bin, et al. 340-GHz 3-D imaging radar with 4Tx-16Rx MIMO array[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(5): 509–519. doi: 10.1109/TTHZ.2018.2853551
    [8] 高敬坤, 邓彬, 秦玉亮, 等. 扫描MIMO阵列近场三维成像技术[J]. 雷达学报, 2018, 7(6): 676–684. doi: 10.12000/JR18102

    GAO Jingkun, DENG Bin, QIN Yuliang, et al. Near-field 3D SAR imaging techniques using a scanning MIMO array[J]. Journal of Radars, 2018, 7(6): 676–684. doi: 10.12000/JR18102
    [9] LI Na, YANG Haining, LI Tingjun, et al. MIMO borehole radar imaging based on high degree of freedom for efficient subsurface sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3380–3391. doi: 10.1109/TGRS.2018.2884257
    [10] FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]. Proceedings of 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78. doi: 10.1109/NRC.2004.1316398.
    [11] FORSYTHE K W, BLISS D W, and FAWCETT G S. Multiple-input multiple-output (MIMO) radar: Performance issues[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2004: 310–315. doi: 10.1109/ACSSC.2004.1399143.
    [12] ROBEY F C, COUTTS S, WEIKLE D, et al. MIMO radar theory and experimental results[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2004: 300–304. doi: 10.1109/ACSSC.2004.1399141.
    [13] WHITE L B and RAY P S. Signal design for MIMO diversity systems[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2004: 973–977. doi: 10.1109/ACSSC.2004.1399284.
    [14] TABRIKIAN J and BEKKERMAN I. Transmission diversity smoothing for multi-target localization[radar/sonar systems][C]. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, USA, 2005: 1041–1044. doi: 10.1109/ICASSP.2005.1416190.
    [15] TABRIKIAN J. Barankin bounds for target localization by MIMO radars[C]. The 4th IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 278–281. doi: 10.1109/SAM.2006.1706137.
    [16] FISHLER E, HAIMOVICH A, BLUM R S, et al. Spatial diversity in radars-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823–838. doi: 10.1109/tsp.2005.862813
    [17] LI Jian, STOICA P, XU Luzhou, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968–971. doi: 10.1109/lsp.2007.905051
    [18] LEHMANN N H, FISHLER E, HAIMOVICH A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 2215–2225. doi: 10.1109/tsp.2007.893220
    [19] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934
    [20] ZHU Yutao, SU Yi, and YU Wenxian. An ISAR imaging method based on MIMO technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3290–3299. doi: 10.1109/tgrs.2010.2045230
    [21] ZHU Yutao and SU Yi. A type of M2-transmitter N2-receiver MIMO radar array and 3D imaging theory[J]. Science China Information Sciences, 2011, 54(10): 2147–2157. doi: 10.1007/s11432-011-4400-y
    [22] MA Changzheng, YEO T S, TAN C S, et al. Three-dimensional imaging of targets using colocated MIMO radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3009–3021. doi: 10.1109/tgrs.2011.2119321
    [23] MA Changzheng, YEO T S, TAN C S, et al. Three-dimensional imaging using colocated MIMO radar and ISAR technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3189–3201. doi: 10.1109/tgrs.2011.2178607
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  3583
  • HTML全文浏览量:  1275
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-09-26
  • 网络出版日期:  2020-08-28

目录

    /

    返回文章
    返回