Research Progress on Coprime Array Signal Processing: Direction-of-Arrival Estimation and Adaptive Beamforming
-
摘要: 阵列信号处理是雷达领域各类应用的核心技术之一。近年来,互质阵列的提出打破了传统方法受限于奈奎斯特采样速率这一瓶颈,其稀疏布设的阵列结构和互质欠采样的信号处理方式大幅降低了系统所需的软硬件开销,为当前不断提升的实际应用需求提供了理论基础和技术前提。鉴于其在自由度、分辨率及计算复杂度等方面的性能优势,互质阵列信号处理的理论和技术研究受到了国内外学者的广泛关注。该文分别从波达方向估计和自适应波束成形这两个阵列信号处理领域的基本问题出发,介绍了互质阵列信号处理方向的研究进展。在互质阵列波达方向估计方面,该文总结了互质子阵分解方法和虚拟阵列信号处理方法等两类典型技术路线,并以此为基础介绍了压缩感知和无网格化技术在低复杂度和超分辨估计等方面的最新研究工作。在互质阵列波束成形方面,该文剖析了其与互质阵列波达方向估计问题的区别与联系,并介绍了面向互质阵列的高效鲁棒自适应波束成形设计方法。该文旨在通过对互质阵列信号处理研究前沿的分类归纳和总结,探讨各类方法的优势和未来的研究方向,为其在雷达等领域的产业需求和实际应用提供理论和技术参考。Abstract: Array signal processing is an essential tool in broad radar applications. The coprime array has recently been proposed to overcome the bottleneck caused by the Nyquist spatial sampling rate. The coprime array, whose sparse structure and undersampling feature drastically decrease necessary computational and hardware cost, provides a theoretical foundation and technical basis for the increasing demands of its practical applications. Considering its superior performance in degrees-of-freedom, spatial resolution, and computational complexity, research on coprime array signal processing has attracted much attention. This paper reviews recent research progress on coprime array signal processing, which has focused on both the Direction-of-Arrival (DOA) estimation and adaptive beamforming. From the perspective of coprime array DOA estimation, this paper summarizes two typical approaches, namely the coprime subarray decomposition-based approach and the virtual array signal processing-based approach. Moreover, recent work on low-complexity and super-resolution DOA estimation via compressive sensing and gridless techniques is also introduced. From the perspective of coprime array adaptive beamforming, the differences and relationships between DOA estimation and beamforming in the framework of coprime array signal processing are discussed, and an efficient, robust, and adaptive beamformer design tailored for the coprime array is introduced. Advantages and the future directions of coprime array signal processing are discussed, along with the theoretical basis and a technical reference for practical radar applications.
-
1. 引言
极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)具有全天时和几乎全天候的工作能力,通过收发极化状态正交的电磁波以获取目标的全极化散射信息[1]。地物分类是农作物生长监控、农村与城市用地普查、环境监测等应用领域的共性基础问题,也是极化SAR图像理解与解译的重要应用方向。高精度的地物分类结果能够为上述应用领域提供可靠的信息支撑。
通常,提高极化SAR地物分类精度主要有两种途径[2]。第1种途径专注于极化特征的挖掘与优选,通过精细化的极化散射机理建模与解译,从全极化信息中提取出对不同地物类别具有更强区分度的特征。常用的极化散射机理解译方法有基于特征值分解的方法和基于模型分解的方法。基于这些极化目标分解方法所得到的极化特征参数经常被用于极化SAR地物分类,例如Cloude-Pottier分解所得的极化熵/极化平均角/极化反熵(H/ α/A)参数[3],Freeman-Durden分解[4]、Yamaguchi分解[5]和近年来提出的精细化极化目标分解[6]所得的各散射机理的散射能量参数(如奇次散射、偶次散射、体散射、螺旋散射等)[7]。第2种途径则从分类器入手,使用性能更好的分类器,以对现有的极化特征进行充分利用。常用的分类器包括C均值分类器、Wishart分类器、支持向量机(Support Vector Machine, SVM)分类器、随机森林分类器、神经网络分类器以及近来年在诸多领域取得成功应用的以卷积神经网络为代表的深度学习分类方法等[8–11]。当然,对特征和分类器同时进行优化和优选也是提高极化SAR地物分类精度的有效途径。
在传统基于特征的极化SAR地物分类中,具有旋转不变特性的极化特征参数得到了广泛应用。例如,基于H/ α/A和总散射能量SPAN的极化SAR地物分类就是一种常用的分类方法。然而,目标的极化响应与目标和SAR的相对几何关系密切相关。同一目标在不同方位取向下,其后向散射可以是显著不同的。同时,不同目标在某些特定方位取向下,其后向散射又是十分相似的。例如,具有不同方位取向的建筑物与森林等植被就是极化SAR图像解译的难点。这是诸多传统极化目标分解方法存在散射机理解译模糊的重要原因之一,同时也限制了基于旋转不变极化特征参数的传统分类方法所得精度的进一步提升。为避免这种解译模糊,一种思路是构建更精细化的目标散射模型和精细化的极化目标分解方法。而另一种思路则是挖掘利用目标方位取向与其后向散射机理之间的隐含关系。文献[12]提出的统一的极化矩阵旋转理论就是一种代表性的方法。该方法提出了在绕雷达视线的旋转域中理解目标散射特性的新思路,并导出了一系列旋转域极化特征。部分旋转域极化特征参数已经在农作物辨识[13]、目标对比增强[12]、人造目标提取[14]等领域获得了成功应用。
由于这些旋转域极化特征包含有目标在旋转域中隐含的极化散射信息,且与其方位取向具有一定关系。若将它们与传统的旋转不变极化特征参数于H/ α/A/SPAN联合作为地物分类特征集,则从极化特征挖掘的角度来看,两类不同的极化特征对于不同地物类别的区分能力势必会形成一定程度的互补,进而使分类精度得到进一步提升。基于这一思路,本文提出了一种结合旋转域极化特征与旋转不变特征H/ α/A/SPAN的极化SAR地物分类方法。具体即基于不同地物类别样本集类间距最大的特征优选准则,以部分优选的旋转域极化特征参数与H/ α/A/SPAN联合作为地物分类所用特征,并选用性能较为稳定的SVM[15]作为分类器进行分类处理。由于该分类方法额外使用了目标在方位取向方面的隐含信息,故相较于仅使用旋转不变特征H/ α/A/SPAN作为输入的SVM分类器[10],其能够达到更优的分类性能表现。
本文第2节简要介绍了统一的极化矩阵旋转理论及其所导出的旋转域极化特征参数;第3节提出结合旋转域极化特征的极化SAR地物分类方法;第4节基于AIRSAR和多时相UAVSAR实测数据开展了地物分类对比实验及分析;第5节总结本文方法并对后续研究工作进行展望。
2. 统一的极化矩阵旋转理论
极化SAR获得的目标全极化信息可以通过极化相干矩阵T表示。满足互易性原理时,极化相干矩阵T可以表示为:
T=⟨kPkHP⟩=[T11T12T13T21T22T23T31T32T33] (1) 其中, kP=1√2[SHH+SVVSHH−SVV2SHV]T为Pauli散射矢量。 SHV为以垂直极化天线发射并以水平极化天线接收条件下的散射系数, kP中其它元素可类似定义。 ⟨ ⟩表示集合平均。 Tij则表示极化相干矩阵 T中第i行第j列所对应的元素。
将极化相干矩阵 T绕雷达视线进行旋转处理,则可得到旋转域中极化相干矩阵的表达式为:
T(θ)=kP(θ)kHP(θ)=R3(θ)TRH3(θ) (2) 其中,旋转矩阵为:
R3(θ)=[1000cos2θsin2θ0−sin2θcos2θ] (3) 在旋转域中极化相干矩阵 T(θ)的每个元素经过相应的数学变换即可被统一地由一个正弦函数进行表征[12]:
f(θ)=Asin[ω(θ+θ0)]+B (4) 其中,A为振荡幅度,B为振荡中心, ω为角频率, θ0为初始角度。文献[12]将这4类极化特征参数 {A,B,ω,θ0}称为振荡参数集,其完整表征极化相干矩阵的各元素在旋转域中的特性。这样就可以导出一系列旋转域极化特征参数,如表1所示。其中, Angle{a}表示复数a的相位,相应取值范围为 [−π,π]。
散射矩阵元素项 A=√∙ B ω θ0=1ωAngle{∙} Re[T12(θ)] Re2[T12]+Re2[T13] 0 2 Re[T13]+jRe[T12] Re[T13(θ)] Re2[T12]+Re2[T13] 0 2 −Re[T12]+jRe[T13] Im[T12(θ)] Im2[T12]+Im2[T13] 0 2 Im[T13]+jIm[T12] Im[T13(θ)] Im2[T12]+Im2[T13] 0 2 −Im[T12]+jIm[T13] Re[T23(θ)] 14(T33−T22)2+Re2[T23] 0 4 12(T33−T22)+jRe[T23] T22(θ) 14(T33−T22)2+Re2[T23] 12(T22+T33) 4 Re[T23]+j12(T22−T33) T33(θ) 14(T33−T22)2+Re2[T23] 12(T22+T33) 4 −Re[T23]+j12(T33−T22) |T12(θ)|2 Re2[T12T∗13]+14(|T13|2−|T12|2)2 12(|T12|2+|T13|2) 4 Re[T12T∗13]+j12(|T12|2−|T13|2) |T13(θ)|2 Re2[T12T∗13]+14(|T13|2−|T12|2)2 12(|T12|2+|T13|2) 4 −Re[T12T∗13]+j12(|T13|2−|T12|2) |T23(θ)|2 14{14(T33−T22)2+Re2[T23]}2 12{14(T33−T22)2+Re2[T23]}+Im2[T23] 8 12(T33−T22)Re[T23]+j12[Re2[T23]−14(T33−T22)2] 基于上述振荡参数集,文献[12]还导出了一系列的极化角参数集,如极化零角参数、极化最大化角参数以及极化最小化角参数等。其中,极化零角参数的定义为在绕雷达视线的旋转域中使极化相干矩阵某元素取值为零的旋转角,即:
f(θ)=Asin[ω(θnull+θ0)]+B=0⇒θnull=−θ0 (5) 其中, θnull即极化零角参数。由于表1中相互独立的5个初始角度 θ0分别为 θ0_Re[T12(θ)], θ0_Im[T12(θ)], θ0_Re[T23(θ)], θ0_|T12(θ)|2和 θ0_|T23(θ)|2,故相应的极化零角参数有 θnull_Re[T12(θ)], θnull_Im[T12(θ)], θnull_Re[T23(θ)], θnull_|T12(θ)|2和 θnull_|T23(θ)|2。由文献[12]可知,各初始角度与其相应极化零角参数所包含的极化信息是相互等价的,且极化零角参数具有相对明确的物理意义,故在本文的后续部分均以极化零角参数代替相应的初始角度。
3. 结合旋转域极化特征的分类方法
3.1 旋转域极化特征的优选
文献[12]使用极化零角参数 θnull_Re[T12(θ)]和 θnull_Im[T12(θ)]的组合能够成功辨识7类不同农作物,初步证实了极化零角参数集对于不同地物类别具有较好的区分能力。在此基础上,本文挖掘利用旋转域极化特征所蕴含目标在旋转域中的隐含信息,并将其应用于极化SAR地物分类。
在此之前,需要基于地物分类的应用背景对众多的旋转域极化特征进行优选处理。在文献[12]所导出的一系列旋转域极化特征之中,以不同地物类别样本集相互之间的“类间距最大化”为准则,进行相应的旋转域极化特征优选。具体步骤为:首先对各旋转域极化特征参数进行归一化处理;然后将不同的地物类别两两组合形成若干的地物类别对;接着针对各地物类别对,以其中两地物类别之间的类间距为标准,优选出使其取值达到最大的旋转域极化特征,则每个地物类别对均对应于一个优选的旋转域极化特征;最后,将各地物类别对的优选结果进行“取并集”处理,进而得到最终的优选结果。
文献[12]所导出相互独立的旋转域极化特征共有12个,分别为 θnull_Re[T12(θ)], θnull_Im[T12(θ)], θnull_Re[T23(θ)], θnull_|T12(θ)|2, θnull_|T23(θ)|2, A_Re[T12(θ)], A_Im[T12(θ)], A_T12(θ), A_ T23(θ), B_T12(θ), B_T33(θ), B_T23(θ)。针对之后实验部分所使用的AIRSAR数据(15类地物,两两组合形成105个地物类别对;其它说明见4.1节)以及多时相UAVSAR数据(7类地物,两两组合形成21个地物类别对;4个数据获取日期;其它说明见4.2节),上述特征优选流程所得结果如表2所示。
表 2 针对不同极化SAR实测数据的特征优选结果Table 2. Selected features for different PolSAR data实测数据 优选所得旋转域极化特征(相应地物类别对的个数) AIRSAR θnull_Re[T12(θ)](18), θnull_Im[T12(θ)](15), θnull_Re[T23(θ)](71), B_T33(θ)(1) UAVSAR 6月17日 θnull_Re[T12(θ)](5), θnull_Im[T12(θ)](12), θnull_Re[T23(θ)](4) 6月22日 θnull_Re[T12(θ)](5), θnull_Im[T12(θ)](14), θnull_Re[T23(θ)](2) 7月03日 θnull_Im[T12(θ)](3), θnull_Re[T23(θ)](18) 7月17日 θnull_Re[T12(θ)](7), θnull_Im[T12(θ)](5), θnull_Re[T23(θ)](9) 综合考虑表2中的优选结果,并在追求较高地物分类精度的同时,将两组实测数据优选得到的旋转域极化特征进行统一,故本文优选部分的最终结果为3个极化零角参数,即 θnull_Re[T12(θ)], θnull_Im[T12(θ)]和 θnull_Re[T23(θ)]。
3.2 本文分类方法
为了将目标在旋转域中的隐含信息充分利用在极化SAR地物分类中,同时又发挥传统的旋转不变极化特征参数H/A/ α/SPAN在极化散射机理解译方面的优点,本文提出了一种结合旋转域极化特征的极化SAR地物分类方法,其流程图如图1所示,相应的具体操作如下:
(1) 在进行Cloude-Pottier分解之前,需要对极化SAR数据进行相干斑滤波处理。本文采用新近提出的一种基于矩阵相似性检验的SimiTest自适应相干斑滤波方法[16]对极化SAR数据进行滤波预处理。
(2) 基于滤波后的极化相干矩阵,计算总散射能量SPAN。
(3) 同样地,基于滤波后的极化相干矩阵,进行Cloude-Pottier分解,得到极化特征量H/ α/A。
(4) 同时,将滤波后的极化相干矩阵绕雷达视线旋转,计算上述优选部分所得的3个极化零角参数。
(5) 对上述7个极化特征参数分别进行归一化处理,以作为地物分类特征集输入至SVM分类器。
(6) 通过SVM相应的训练与测试过程,实现对不同地物类别的分类处理。
4. 对比实验及分析
为了验证新极化特征(即3个旋转域极化零角参数)的引入对于传统地物分类方法性能的提升作用,在对极化相干矩阵中全部极化信息进行利用的前提之下,将本文方法与仅使用旋转不变特征H/A/ α/SPAN作为SVM分类器输入的传统方法进行对比。首先使用AIRSAR数据15类地物的分类验证本文方法的分类性能,再使用多时相UAVSAR数据7类地物的分类进一步验证本文方法对多时相数据的稳健性。在对此两组数据分别进行SimiTest相干斑滤波[16]时,所用滑窗大小均为15×15。对SVM分类器,各类地物样本的一半用于训练,另一半用于测试。
4.1 对AIRSAR数据的地物分类对比实验
本文首先使用NASA/JPL AIRSAR系统在荷兰Flevoland地区所获取的L波段全极化SAR数据进行地物分类实验。该数据方位向分辨率为12.1 m,距离向分辨率为6.6 m,所用区域大小为736×1010。SimiTest相干斑滤波后的Pauli RGB图如图2(a)所示。该区域的真值图如图2(b)所示,其中主要包含茎豆、豌豆、森林、苜蓿、小麦1、甜菜、土豆、裸地、草地、油菜籽、大麦、小麦2、小麦3、水域以及建筑物等15类地物。
使用传统方法和本文方法分别对滤波后的数据进行分类处理,所得结果如图3所示。
两种方法对AIRSAR数据15类地物分类处理所得精度如表3所示。通过比较可知,本文方法得到的总体分类精度为92.3%,优于传统方法91.1%的分类精度。且本文方法对草地77.3%的分类精度相较于传统方法的59.3%提升了18个百分点。另外,由于SVM分类器所用分类策略以总体分类精度的最大化为目标,无法保证单一地物类别的分类精度均达到最优。例如,本文方法在苜蓿、小麦1、裸地、大麦以及建筑物等5种地物类别区域所得分类精度均不及传统方法。针对其中分类精度差距最大(约8.3%)的裸地,由于其相应区域的主要散射机制为“面散射”,不同方位取向对其后向散射的影响较小,使用传统的旋转不变极化特征已经能较好地对其进行区分与辨识,本文方法额外引入的3个旋转域极化零角参数可能造成了分类信息的冗余,进而导致所得分类精度的较大幅度下降。
表 3 两种方法所得AIRSAR数据15类地物及总体的分类精度(%)Table 3. Classification accuracy of different terrains in AIRSAR data using two methods (%)地物 传统方法 本文方法 茎豆 97.2 98.0 豌豆 93.7 96.9 森林 92.6 93.7 苜蓿 96.8 96.6 小麦1 88.7 85.9 甜菜 93.8 93.8 土豆 92.6 93.3 裸地 95.5 87.2 草地 59.3 77.3 油菜籽 83.9 88.0 大麦 92.6 91.5 小麦2 89.2 89.4 小麦3 94.3 95.9 水域 98.0 98.5 建筑物 84.9 83.2 总体精度 91.1 92.3 4.2 对多时相UAVSAR数据的地物分类对比实验
本文使用NASA/JPL UAVSAR系统在加拿大Manitoba地区所获取的多时相L波段全极化SAR数据进行地物分类实验。该数据方位向分辨率为7 m,距离向分辨率为5 m,所用区域大小为1325×1011。多时相极化SAR数据分别获取于6月17日、6月22日、7月3日以及7月17日。SimiTest相干斑滤波处理之后多时相极化SAR数据对应的Pauli RGB图如图4所示。该区域的主要地物类型是以谷物和油种产品为代表的混合型牧场农作物。相应的真值图如图5所示,其中主要包含阔叶林、草料、大豆、玉米、小麦、油菜籽以及燕麦等7类地物。
使用传统方法和本文方法分别对滤波后的多时相极化SAR数据进行相互独立的分类处理,所得结果分别如图6和图7所示。
如图6(c)和图7(c)所示,基于7月3日获取的数据,传统方法将红色圆框内小麦与燕麦的绝大部分错分为了大豆,而本文方法在该区域的分类性能相较于前者有显著提升。又如图6(d)和图7(d)所示,基于7月17日获取的数据,传统方法将白色圆框内小麦的绝大部分错分为了大豆,而本文方法在该区域的分类精度相较于前者也有较大提升。
两种方法对多时相UAVSAR数据7类地物分类处理所得精度如表4所示。通过比较可知,对不同日期获取的数据,本文方法所得各类地物及总体的分类精度均优于或相当于传统方法。其中,对6月17日、6月22日、7月3日以及7月17日4个不同日期所获取的数据,本文方法得到的总体分类精度分别为94.98%, 95.12%, 95.99%以及96.78%,而传统方法所得总体分类精度则波动于80.87%至90.75%之间,出现约10%的起伏。具体就小麦和燕麦而言,本文方法得到的分类精度均分别保持在94%和92%以上,而传统方法所得相应分类精度则分别出现了约30%和23%的波动起伏。另外,本文方法95.72%的平均总体分类精度相较于传统方法的87.80%提升了约8个百分点。故本文方法较好的分类性能对于同一系统的多时相数据更具稳健性。
表 4 两种方法所得多时相UAVSAR数据7类地物及总体的分类精度 (%)Table 4. The classification accuracy of different terrains in multi-temporal UAVSAR data using two methods (%)日期 方法 阔叶林 草料 大豆 玉米 小麦 油菜籽 燕麦 总体 6月17日 传统 98.47 62.24 92.64 96.12 93.63 91.70 86.37 90.19 本文 98.49 81.65 96.76 98.19 96.08 92.25 96.32 94.98 6月22日 传统 98.05 61.38 94.14 97.30 97.89 93.82 77.29 90.75 本文 97.96 72.60 96.86 98.18 97.07 96.84 95.13 95.12 7月3日 传统 97.41 54.38 90.45 98.89 68.75 98.81 63.46 80.87 本文 97.77 76.68 98.12 99.08 96.95 98.93 94.22 95.99 7月17日 传统 96.86 64.51 97.38 99.78 84.76 92.19 82.98 89.39 本文 97.27 93.15 99.31 99.58 94.73 99.71 92.16 96.78 平均 传统 97.70 60.63 93.65 98.02 86.26 94.13 77.53 87.80 本文 97.87 81.02 97.76 98.76 96.21 96.93 94.46 95.72 另外,对于6月22日所获取数据中的阔叶林和小麦,以及7月17日所获取数据中的玉米,本文方法所得分类精度均略低于传统方法,且分类精度的差距均在1%以内。
在上述两组相互独立的对比实验所得结果中,本文方法所得分类精度均优于传统方法。故本文方法所表现出的较好分类性能对于不同系统的数据也具有较强稳健性。
5. 结论
目标方位取向对其后向散射响应的直接影响极易引起散射机理的解译模糊,进而限制仅使用旋转不变特征参数作为分类特征集的极化SAR地物分类所得精度。针对这一问题,本文将刻画目标旋转域隐含信息的旋转域极化特征用于极化SAR地物分类,并提出了一种结合旋转域极化特征和旋转不变特征H/A/ α/SPAN的极化SAR地物分类方法,该方法将旋转域极化零角参数和H/A/ α/SPAN联合作为分类特征集输入至SVM分类器。
将本文方法与仅使用旋转不变特征H/A/ α/SPAN作为SVM分类器输入的传统方法进行比较:对AIRSAR数据15类地物分类而言,本文方法总体分类精度达到92.3%,优于传统方法的91.1%。对多时相UAVSAR数据7类地物分类而言,本文方法平均总体分类精度达到95.72%,显著优于传统方法的87.80%,表明本文方法对同一系统的多时相数据更具稳健性。这两组对比实验也表明本文方法较好的分类性能对于不同系统的数据具有较强稳健性。
通过对旋转域中目标极化散射信息的深入挖掘,能够为极化SAR图像的解译与应用提供一条新的可行途径。下一步将考虑旋转域极化特征与具有深度学习能力的卷积神经网络等分类器相结合,以实现更高的分类精度。另外,对极化特征参数更优的选择准则及相互融合也是我们未来将要深入研究讨论的内容。
-
-
[1] VON AULOCK W H. Properties of phased arrays[J]. Proceedings of the IRE, 1960, 48(10): 1715–1727. doi: 10.1109/JRPROC.1960.287523 [2] MAILLOUX R J. Phased array theory and technology[J]. Proceedings of the IEEE, 1982, 70(3): 246–291. doi: 10.1109/PROC.1982.12285 [3] WARD C, HARGRAVE P, and MCWHIRTER J. A novel algorithm and architecture for adaptive digital beamforming[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 338–346. doi: 10.1109/TAP.1986.1143818 [4] TALISA S H, O’HAVER K W, COMBERIATE T M, et al. Benefits of digital phased array radars[J]. Proceedings of the IEEE, 2016, 104(3): 530–543. doi: 10.1109/JPROC.2016.2515842 [5] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278 [6] FROST O and SULLIVAN T. High-resolution two-dimensional spectral analysis[C]. 1979 IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, USA, 1979: 673–676. [7] WAX M, SHAN T J, and KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817–827. doi: 10.1109/TASSP.1984.1164400 [8] LEMMA A N, VAN DER VEEN A J, and DEPRETTERE E F. Joint angle-frequency estimation using multi-resolution ESPRIT[C]. 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, USA, 1998: 1957–1960. [9] TSAKALIDES P, RASPANTI R, and NIKIAS C L. Angle/Doppler estimation in heavy-tailed clutter backgrounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 419–436. doi: 10.1109/7.766926 [10] LU Lu, LI G Y, LEE SWINDLEHURST A, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758. doi: 10.1109/JSTSP.2014.2317671 [11] LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken: Wiley & Sons, 2009. [12] LI Jian, BLUM R S, STOICA P, et al. Introduction to the issue on MIMO radar and its applications[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 2–4. doi: 10.1109/JSTSP.2010.2040416 [13] 周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of Multi-Input Multi-Output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074 [14] 高敬坤, 邓彬, 秦玉亮, 等. 扫描MIMO阵列近场三维成像技术[J]. 雷达学报, 2018, 7(6): 676–684. doi: 10.12000/JR18102GAO Jingkun, DENG Bin, QIN Yuliang, et al. Near-field 3D SAR imaging techniques using a scanning MIMO array[J]. Journal of Radars, 2018, 7(6): 676–684. doi: 10.12000/JR18102 [15] CHEN Jinli, GU Hong, and SU Weimin. A new method for joint DOD and DOA estimation in bistatic MIMO radar[J]. Signal Processing, 2010, 90(2): 714–718. doi: 10.1016/j.sigpro.2009.08.003 [16] WEN Fangqing, ZHANG Zijing, WANG Ke, et al. Angle estimation and mutual coupling self-calibration for ULA-based bistatic MIMO radar[J]. Signal Processing, 2018, 144: 61–67. doi: 10.1016/j.sigpro.2017.09.021 [17] WEN Fangqing, XIONG Xiaodong, and ZHANG Zijing. Angle and mutual coupling estimation in bistatic MIMO radar based on PARAFAC decomposition[J]. Digital Signal Processing, 2017, 65: 1–10. doi: 10.1016/j.dsp.2017.02.011 [18] LIN Y C, LEE T S, PAN Yunhan, et al. Low-complexity high-resolution parameter estimation for automotive MIMO radars[J]. IEEE Access, 2019. doi: 10.1109/ACCESS.2019.2926413 [19] AMIRI R, BEHNIA F, and NOROOZI A. Efficient joint moving target and antenna localization in distributed MIMO radars[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4425–4435. doi: 10.1109/TWC.2019.2924626 [20] MAO Chenxing, WEN Fangqing, ZHANG Zijing, et al. New approach for DOA estimation in MIMO radar with nonorthogonal waveforms[J]. IEEE Sensors Letters, 2019, 3(7): 7001104. [21] WEN Fangqing. Computationally efficient DOA estimation algorithm for MIMO radar with imperfect waveforms[J]. IEEE Communications Letters, 2019, 23(6): 1037–1040. doi: 10.1109/LCOMM.2019.2911285 [22] WEN Fangqing, XIONG Xiaodong, SU Jian, et al. Angle estimation for bistatic MIMO radar in the presence of spatial colored noise[J]. Signal Processing, 2017, 134: 261–267. doi: 10.1016/j.sigpro.2016.12.017 [23] FU Xiuwen, CAO Renzheng, and WEN Fangqing. A de-noising 2-D-DOA estimation method for uniform rectangle array[J]. IEEE Communications Letters, 2018, 22(9): 1854–1857. doi: 10.1109/LCOMM.2018.2849724 [24] WEN Fangqing, ZHANG Xinyu, and ZHANG Zijing. CRBs for direction-of-departure and direction-of-arrival estimation in collocated MIMO radar in the presence of unknown spatially coloured noise[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 530–537. [25] WEN Fangqing, WU Lei, CAI Changxin, et al. Joint DOD and DOA estimation for bistatic MIMO radar in the presence of combined array errors[C]. The 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 174–178. [26] KLEMM R. Introduction to space-time adaptive processing[J]. Electronics & Communication Engineering Journal, 1999, 11(1): 5–12. [27] 王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4(2): 136–148. doi: 10.12000/JR14091WANG Ting, ZHAO Yongjun, and HU Tao. Overview of space-time adaptive processing for airborne Multiple-Input Multiple-Output radar[J]. Journal of Radars, 2015, 4(2): 136–148. doi: 10.12000/JR14091 [28] 谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586. doi: 10.12000/JR17073XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space time adaptive processing technique for airborne radar: An overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586. doi: 10.12000/JR17073 [29] FU Dongning, WEN Jun, XU Jingwei, et al. STAP-based airborne radar system for maneuvering target detection[J]. IEEE Access, 2019, 7: 62071–62079. doi: 10.1109/ACCESS.2019.2914224 [30] HE Tuan and ZHANG Yu. A MIMO radar STAP method based on sparse dictionary atomic selection[C]. The 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China, 2019: 433–436. [31] JIA Fengde, SUN Guohao, HE Zishu, et al. Grating-lobe clutter suppression in uniform subarray for airborne radar STAP[J]. IEEE Sensors Journal, 2019, 19(16): 6956–6965. doi: 10.1109/JSEN.2019.2912827 [32] LU Lei, ZHOU Chengwei, SHI Zhiguo, et al. Off-grid angle-Doppler estimation for space-time adaptive processing: A sequential approach[C]. 2019 IEEE/CIC International Conference on Communications in China, Changchun, China, 2019: 231–236. [33] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682 [34] WANG Huafei, WAN Liangtian, DONG Mianxiong, et al. Assistant vehicle localization based on three collaborative base stations via SBL-based robust DOA estimation[J]. IEEE Internet of Things Journal, 2019, 6(3): 5766–5777. doi: 10.1109/JIOT.2019.2905788 [35] WU Xiaohuan, ZHU Weiping, and YAN Jun. A high-resolution DOA estimation method with a family of nonconvex penalties[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4925–4938. doi: 10.1109/TVT.2018.2817638 [36] 周超伟, 李真芳, 王跃锟, 等. 联合多方位角调频率估计的星载SAR三维成像方法[J]. 雷达学报, 2018, 7(6): 696–704. doi: 10.12000/JR18094ZHOU Chaowei, LI Zhenfang, WANG Yuekun, et al. Space-borne SAR three-dimensional imaging by joint multiple azimuth angle Doppler frequency rate estimation[J]. Journal of Radars, 2018, 7(6): 696–704. doi: 10.12000/JR18094 [37] ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. DECOM: DOA estimation with combined MUSIC for coprime array[C]. 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2013: 1–5. [38] SUN Fenggang, GAO Bin, CHEN Lizhen, et al. A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[J]. Sensors, 2016, 16(9): 1367. doi: 10.3390/s16091367 [39] ZHANG Dong, ZHANG Yongshun, ZHENG Guimei, et al. Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[J]. Electronics Letters, 2017, 53(18): 1277–1279. doi: 10.1049/el.2017.2292 [40] YAN Fenggang, LIU Shuai, WANG Jun, et al. Fast DOA estimation using co-prime array[J]. Electronics Letters, 2018, 54(7): 409–410. doi: 10.1049/el.2017.2491 [41] LI Jianfeng, SHEN Mingwei, and JIANG Defu. Fast direction of arrival estimation using a sensor-saving coprime array with enlarged inter-element spacing[C]. The 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 179–183. [42] ZHENG Wang, ZHANG Xiaofei, GONG Pan, et al. DOA estimation for coprime linear arrays: An ambiguity-free method involving full DOFs[J]. IEEE Communications Letters, 2018, 22(3): 562–565. doi: 10.1109/LCOMM.2017.2787698 [43] LI Jianfeng and ZHANG Xiaofei. Direction of arrival estimation of Quasi-Stationary signals using unfolded coprime array[J]. IEEE Access, 2017, 5: 6538–6545. doi: 10.1109/ACCESS.2017.2695581 [44] PAL P and VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]. Proceedings of 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 289–294. [45] LIU Chunlin and VAIDYANATHAN P P. Coprime arrays and samplers for space-time adaptive processing[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2364–2368. [46] ZHOU Chengwei and ZHOU Jinfang. Direction-of-arrival estimation with coarray ESPRIT for coprime array[J]. Sensors, 2017, 17(8): 1779. doi: 10.3390/s17081779 [47] TAN Zhao, ELDAR Y C, and NEHORAI A. Direction of arrival estimation using co-prime arrays: A super resolution viewpoint[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5565–5576. doi: 10.1109/TSP.2014.2354316 [48] PAL P and VAIDYANATHAN P P. On application of LASSO for sparse support recovery with imperfect correlation awareness[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 958–962. [49] PAL P and VAIDYANATHAN P P. Correlation-aware techniques for sparse support recovery[C]. 2012 IEEE Statistical Signal Processing Workshop, Ann Arbor, USA, 2012: 53–56. [50] LV Wanghan and WANG Huali. Joint DOA and frequency estimation based on spatio-temporal co-prime sampling[C]. 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. [51] QIN Si, ZHANG Y D, and AMIN M G. Multi-target localization using frequency diverse coprime arrays with coprime frequency offsets[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. [52] ZHANG Y D, AMIN M G, and HIMED B. Sparsity-based DOA estimation using co-prime arrays[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 3967–3971. [53] QIN Si, ZHANG Y D, AMIN M G, et al. Generalized coprime sampling of Toeplitz matrices for spectrum estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 81–94. doi: 10.1109/TSP.2016.2614799 [54] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838 [55] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based two-dimensional DOA estimation for coprime array: From sum-difference coarray viewpoint[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5591–5604. doi: 10.1109/TSP.2017.2739105 [56] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5835–5848. doi: 10.1109/TVT.2019.2913437 [57] ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. DOA estimation by covariance matrix sparse reconstruction of coprime array[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2369–2373. [58] SHI Zhiguo, ZHOU Chengwei, GU Yujie, et al. Source estimation using coprime array: A sparse reconstruction perspective[J]. IEEE Sensors Journal, 2017, 17(3): 755–765. doi: 10.1109/JSEN.2016.2637059 [59] ZHENG Yunmei, SHI Zhiguo, LU Rongxing, et al. An efficient data-driven particle PHD filter for multitarget tracking[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2318–2326. doi: 10.1109/TII.2012.2228875 [60] GU Yujie, GOODMAN N A, HONG Shaohua, et al. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction[J]. Signal Processing, 2014, 96: 375–381. doi: 10.1016/j.sigpro.2013.10.009 [61] GU Yujie and GOODMAN N A. Information-theoretic compressive sensing kernel optimization and Bayesian Cramér-Rao bound for time delay estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4525–4537. doi: 10.1109/TSP.2017.2706187 [62] YU Wenbin, CHEN Cailian, HE Tian, et al. Adaptive compressive engine for real-time electrocardiogram monitoring under unreliable wireless channels[J]. IET Communications, 2016, 10(6): 607–615. doi: 10.1049/iet-com.2015.0882 [63] DING Wenbo, YANG Fang, LIU Sicong, et al. Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems[J]. IET Communications, 2016, 10(6): 685–690. doi: 10.1049/iet-com.2015.0697 [64] ZHOU Chengwei, GU Yujie, ZHANG Y D, et al. Compressive sensing-based coprime array direction-of-arrival estimation[J]. IET Communications, 2017, 11(11): 1719–1724. doi: 10.1049/iet-com.2016.1048 [65] GUO Muran, ZHANG Y D, and CHEN Tao. DOA estimation using compressed sparse array[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 4133–4146. doi: 10.1109/TSP.2018.2847645 [66] GU Yujie, ZHANG Y D, and GOODMAN N A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3181–3185. [67] BOUDAHER E, JIA Yong, AHMAD F, et al. Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3797–3808. doi: 10.1109/TSP.2015.2432734 [68] LIU Chunlin, VAIDYANATHAN P P, and PAL P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2639–2642. [69] HOSSEINI S M and SEBT M A. Array interpolation using covariance matrix completion of minimum-size virtual array[J]. IEEE Signal Processing Letters, 2017, 24(7): 1063–1067. doi: 10.1109/LSP.2017.2708750 [70] YANG Zai and XIE Lihua. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/TSP.2015.2420541 [71] CANDÈS E J and FERNANDEZ-GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and applied Mathematics, 2014, 67(6): 906–956. doi: 10.1002/cpa.21455 [72] YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792 [73] YANG Zai, LI Jian, STOICA P, et al. Sparse methods for direction-of-arrival estimation[M]. CHELLAPPA R and THEODORIDIS S. Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering. Amsterdam: Academic Press, 2018: 509–581. [74] WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Two sparse-based methods for off-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87–95. doi: 10.1016/j.sigpro.2017.07.004 [75] WU Xiaohuan, ZHU Weiping, and YAN Jun. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004–2016. doi: 10.1109/JSEN.2015.2508059 [76] LI Jianfeng, LI Yunxiang, and ZHANG Xiaofei. Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22(12): 2495–2498. doi: 10.1109/LCOMM.2018.2872955 [77] PAN Jie, ZHOU Changling, LIU Bo, et al. Joint DOA and Doppler frequency estimation for coprime arrays and samplers based on continuous compressed sensing[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. [78] FAN Xing, ZHOU Chengwei, GU Yujie, et al. Toeplitz matrix reconstruction of interpolated coprime virtual array for DOA estimation[C]. The 2017 IEEE 85th Vehicular Technology Conference, Sydney, Australia, 2017: 1–5. [79] ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012 [80] ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. Coarray interpolation-based coprime array DOA estimation via covariance matrix reconstruction[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 3479–3483. [81] ZHOU Chengwei, GU Yujie, SHI Zhiguo, et al. Off-grid direction-of-arrival estimation using coprime array interpolation[J]. IEEE Signal Processing Letters, 2018, 25(11): 1710–1714. doi: 10.1109/LSP.2018.2872400 [82] WU Xiaohuan, ZHU Weiping, and YAN Jun. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226 [83] WU Xiaohuan, ZHU Weiping, and YAN Jun. A fast gridless covariance matrix reconstruction method for one- and two-dimensional direction-of-arrival estimation[J]. IEEE Sensors Journal, 2017, 17(15): 4916–4927. doi: 10.1109/JSEN.2017.2709329 [84] SHEN Yifan, ZHOU Chengwei, GU Yujie, et al.. Vandermonde decomposition of coprime coarray covariance matrix for DOA estimation[C]. Proceedings of the 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Hokkaido, Japan, 2017: 1–5. [85] DU Lin, YARDIBI T, LI Jian, et al. Review of user parameter-free robust adaptive beamforming algorithms[J]. Digital Signal Processing, 2009, 19(4): 567–582. doi: 10.1016/j.dsp.2009.02.001 [86] CHOI Y H. Subspace based adaptive beamforming method with low complexity[J]. Electronics Letters, 2011, 47(9): 529–530. doi: 10.1049/el.2011.0512 [87] FELDMAN D D and GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867–876. doi: 10.1109/78.285650 [88] LI Jian, STOICA P, and WANG Zhisong. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702–1715. doi: 10.1109/TSP.2003.812831 [89] BELL K L, EPHRAIM Y, and VAN TREES H L. A Bayesian approach to robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 2000, 48(2): 386–398. doi: 10.1109/78.823966 [90] VOROBYOV S A, GERSHMAN A B, and LUO Zhiquan. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865 [91] GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289 [92] ZHOU Chengwei, GU Yujie, SONG Wenzhan, et al. Robust adaptive beamforming based on DOA support using decomposed coprime subarrays[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2986–2990. [93] ZHOU Chengwei, GU Yujie, HE Shibo, et al. A robust and efficient algorithm for coprime array adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1099–1112. doi: 10.1109/TVT.2017.2704610 [94] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893 [95] ZHOU Chengwei, SHI Zhiguo, and GU Yujie. Coprime array adaptive beamforming with enhanced degrees-of-freedom capability[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1357–1361. [96] HUANG Jiyan, WANG Peng, and WAN Qun. Sidelobe suppression for blind adaptive beamforming with sparse constraint[J]. IEEE Communications Letters, 2011, 15(3): 343–345. doi: 10.1109/LCOMM.2011.012511.102215 [97] GU Yujie, ZHOU Chengwei, GOODMAN N A, et al. Coprime array adaptive beamforming based on compressive sensing virtual array signal[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2981–2985. [98] LIU Jianyan, ZHANG Yanmei, LU Yilong, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5549–5563. doi: 10.1109/TSP.2017.2736493 [99] ZHENG Wang, ZHANG Xiaofei, and ZHAI Hui. Generalized coprime planar array geometry for 2-D DOA estimation[J]. IEEE Communications Letters, 2017, 21(5): 1075–1078. doi: 10.1109/LCOMM.2017.2664809 [100] YANG M, HAIMOVICH A M, CHEN Baixiao, et al. A new array geometry for DOA estimation with enhanced degrees of freedom[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3041–3045. [101] RAZA A, LIU Wei, and SHEN Qing. Thinned coprime arrays for DOA estimation[C]. The 2017 25th European Signal Processing Conference, Kos, Greece, 2017: 395–399. [102] XU Haiyun, ZHANG Yankui, and BA Bin. Direction finding using coprime array with sensor gain and phase errors[C]. 2017 International Conference on Computer Technology, Electronics and Communication, Dalian, China, 2017: 880–885. [103] TIAN Ye, SHI Hongyin, and XU He. DOA estimation in the presence of unknown non-uniform noise with coprime array[J]. Electronics Letters, 2017, 53(2): 113–115. doi: 10.1049/el.2016.3944 [104] LI Conghui, GAN Lu, and LING Cong. 2D MIMO radar with coprime arrays[C]. The 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 612-616. [105] 王龙刚, 李廉林. 基于互质阵列雷达技术的近距离目标探测方法[J]. 雷达学报, 2016, 5(3): 244–253. doi: 10.12000/JR16022WANG Longgang and LI Lianlin. Short-range radar detection with (M, N)-coprime array configurations[J]. Journal of Radars, 2016, 5(3): 244–253. doi: 10.12000/JR16022 [106] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom[J]. IEEE Sensors Journal, 2018, 18(3): 1203–1212. doi: 10.1109/JSEN.2017.2782746 [107] YANG Minglei, SUN Lei, YUAN Xin, et al. A new nested MIMO array with increased degrees of freedom and hole-free difference coarray[J]. IEEE Signal Processing Letters, 2018, 25(1): 40–44. doi: 10.1109/LSP.2017.2766294 [108] LI Jianfeng, ZHANG Xiaofei, and JIANG Defu. DOD and DOA estimation for bistatic coprime MIMO radar based on combined ESPRIT[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. [109] ZHANG Zongyu, ZHOU Chengwei, GU Yujie, et al. FFT-based DOA estimation for coprime MIMO radar: A Hardware-Friendly approach[C]. Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5. [110] TAO Yu, ZHANG Gong, and LI Daren. Coprime sampling with deterministic digital filters in compressive sensing radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. [111] ZHANG Zongyu, ZHOU Chengwei, GU Yujie, et al. An IDFT approach for coprime array direction-of-arrival estimation[J]. Digital Signal Processing, 2019. doi: 10.1016/j.dsp.2019.05.006 [112] LI Jianfeng, SHEN Mingwei, and DING Ji. Direction of arrival estimation for co-prime MIMO radar based on unitary root-MUSIC[C]. The 2015 2nd International Conference on Wireless Communication and Sensor Network, Changsha, China, 2016: 307–315. [113] LI Jianfeng, JIANG Defu, and ZHANG Xiaofei. DOA estimation based on combined unitary ESPRIT for coprime MIMO radar[J]. IEEE Communications Letters, 2017, 21(1): 96–99. doi: 10.1109/LCOMM.2016.2618789 [114] JIA Yong, ZHONG Xiaoling, GUO Yong, et al. DOA and DOD estimation based on bistatic MIMO radar with co-prime array[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 394–397. [115] ZHANG Zongyu, ZHOU Chengwei, GU Yujie, et al. Efficient DOA estimation for coprime array via inverse discrete Fourier transform[C]. The 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5. [116] LI Jianfeng and JIANG Defu. Low-complexity propagator based two dimensional angle estimation for coprime MIMO radar[J]. IEEE Access, 2018, 6: 13931–13938. doi: 10.1109/ACCESS.2018.2813014 期刊类型引用(26)
1. 刘畅宇,张浩,耿芳琳,白忠瑞,王鹏,李振锋,杜利东,陈贤祥,方震. 基于距离抽头重构的生理雷达动态解调算法. 雷达学报(中英文). 2025(01): 135-150 . 百度学术
2. 赵翔,王威,李晨洋,关建,李刚. 基于毫米波雷达微动信号和脉搏波数据融合的睡眠呼吸暂停低通气综合征筛查技术. 雷达学报(中英文). 2025(01): 102-116 . 百度学术
3. 武赟,张东恒,张淦霖,谢学诚,詹丰全,陈彦. 智能反射表面辅助的WiFi呼吸感知. 雷达学报(中英文). 2025(01): 189-203 . 百度学术
4. 黄帅铭,朱晓华,王武斌,赵恒,洪弘. U-Sodar:基于超声波雷达的非接触生命体征检测技术. 雷达学报(中英文). 2025(01): 168-188 . 百度学术
5. 田雨,王舒怡,赵博衡,方震,杨杰. 基于毫米波雷达的中医情志数据科学化探析. 中华中医药学刊. 2025(02): 12-15+259-260 . 百度学术
6. 张冰洋,黄霞. 连续波生物雷达生命体征检测平台与实验研究. 中国现代教育装备. 2024(01): 77-79+83 . 百度学术
7. 周杨,李剑鹏,王知雨,梁庆真. 基于4D点云和航迹信息的人员跌倒检测方法. 电子技术应用. 2024(01): 120-124 . 百度学术
8. 张敏,张欢,史晓娟,梁卓文,张娜. 老年患者跌倒检测系统的设计与实现. 中国医学装备. 2024(02): 157-161 . 百度学术
9. 韩丽有,谭钦红,刘家森. 基于CNN-BiLSTM的FMCW雷达生命体征信号检测. 激光杂志. 2024(03): 68-73 . 百度学术
10. 屈乐乐,杨研. 基于MIMO-FMCW雷达的多人生命体征检测. 雷达科学与技术. 2024(03): 247-254+264 . 百度学术
11. 郭洪瑞,曹汇敏,杨克奇,张朱珊莹. 基于多通道雷达数据融合的人体心率精准测量. 生物医学工程学杂志. 2024(03): 461-468 . 百度学术
12. 王超超,胡钧益,蒋治国,张先超. SCG信号处理与应用研究进展. 传感技术学报. 2024(06): 923-940 . 百度学术
13. 杨天虹,屈乐乐. 基于FMCW毫米波雷达的人体生命体征检测实验设计. 实验室研究与探索. 2024(06): 60-65 . 百度学术
14. 姬丽静,郭书文,刘瑞霞,秦钰锦,徐蔚,虞青松. 重复作业人机工程风险监测评估研究综述. 机械设计. 2024(09): 149-155 . 百度学术
15. 邹优敏,俞卫锋,罗恒,蔡端芳,谭友果. 基于多普勒效应的非接触式呼吸探测传感器研究. 电子元件与材料. 2024(08): 938-943 . 百度学术
16. 张冰洋,高军峰,张宇,黄龙,付君雅,曹书琪,赵小玉. 基于雷达传感器的非接触式睡眠呼吸检测系统设计. 现代电子技术. 2024(22): 7-11 . 百度学术
17. 倪杰,王勇,杨小龙,聂伟,张茜,罗朗娟. 基于毫米波雷达的心率变异性检测方法. 移动通信. 2024(12): 103-115 . 百度学术
18. 黄育夫,高旭. 基于毫米波雷达的睡眠监控技术研究. 家电科技. 2024(S1): 479-483 . 百度学术
19. 陈佳欣,李灿航,刘美,孟亚男. 基于FMCW雷达的人体活动感知综述. 广东石油化工学院学报. 2024(06): 42-48 . 百度学术
20. 李牧,王昭,骆宇. 基于TsFresh-Stacking的毫米波雷达人体跌倒检测方法. 网络安全与数据治理. 2023(06): 71-78 . 百度学术
21. 麦超云,王占,洪晓纯,黄传好,刘子明. GSWOA-VMD在毫米波雷达非接触式生命体征检测中的应用. 现代电子技术. 2023(16): 69-74 . 百度学术
22. 刘梓隆,林志伟,张利,何华斌,蔡志明. 基于呼吸心跳时序混叠信号的毫米波雷达身份识别. 闽南师范大学学报(自然科学版). 2023(03): 107-115 . 百度学术
23. 卢赛虎,张浩,牟岫影,王鹏,杜利东,陈贤祥,黄可,杨汀,方震. 慢阻肺数字疗法探讨. 生物医学工程研究. 2023(03): 279-284 . 百度学术
24. 黄政钦,刘铭华,陈文骏. 非接触式生理参数检测系统的设计与实现. 科技创新与应用. 2023(34): 48-52 . 百度学术
25. 何鹏宇,卓智海. 基于VMD-SWT联合算法的FMCW雷达生命体征检测. 北京信息科技大学学报(自然科学版). 2023(06): 41-47 . 百度学术
26. 郑铭凯,饶彬,王伟. 基于超宽带冲激雷达的人体动作识别和心率估计数据集. 中国科学数据(中英文网络版). 2023(04): 484-495 . 百度学术
其他类型引用(31)
-