Research Progress on Coprime Array Signal Processing: Direction-of-Arrival Estimation and Adaptive Beamforming
-
摘要: 阵列信号处理是雷达领域各类应用的核心技术之一。近年来,互质阵列的提出打破了传统方法受限于奈奎斯特采样速率这一瓶颈,其稀疏布设的阵列结构和互质欠采样的信号处理方式大幅降低了系统所需的软硬件开销,为当前不断提升的实际应用需求提供了理论基础和技术前提。鉴于其在自由度、分辨率及计算复杂度等方面的性能优势,互质阵列信号处理的理论和技术研究受到了国内外学者的广泛关注。该文分别从波达方向估计和自适应波束成形这两个阵列信号处理领域的基本问题出发,介绍了互质阵列信号处理方向的研究进展。在互质阵列波达方向估计方面,该文总结了互质子阵分解方法和虚拟阵列信号处理方法等两类典型技术路线,并以此为基础介绍了压缩感知和无网格化技术在低复杂度和超分辨估计等方面的最新研究工作。在互质阵列波束成形方面,该文剖析了其与互质阵列波达方向估计问题的区别与联系,并介绍了面向互质阵列的高效鲁棒自适应波束成形设计方法。该文旨在通过对互质阵列信号处理研究前沿的分类归纳和总结,探讨各类方法的优势和未来的研究方向,为其在雷达等领域的产业需求和实际应用提供理论和技术参考。Abstract: Array signal processing is an essential tool in broad radar applications. The coprime array has recently been proposed to overcome the bottleneck caused by the Nyquist spatial sampling rate. The coprime array, whose sparse structure and undersampling feature drastically decrease necessary computational and hardware cost, provides a theoretical foundation and technical basis for the increasing demands of its practical applications. Considering its superior performance in degrees-of-freedom, spatial resolution, and computational complexity, research on coprime array signal processing has attracted much attention. This paper reviews recent research progress on coprime array signal processing, which has focused on both the Direction-of-Arrival (DOA) estimation and adaptive beamforming. From the perspective of coprime array DOA estimation, this paper summarizes two typical approaches, namely the coprime subarray decomposition-based approach and the virtual array signal processing-based approach. Moreover, recent work on low-complexity and super-resolution DOA estimation via compressive sensing and gridless techniques is also introduced. From the perspective of coprime array adaptive beamforming, the differences and relationships between DOA estimation and beamforming in the framework of coprime array signal processing are discussed, and an efficient, robust, and adaptive beamformer design tailored for the coprime array is introduced. Advantages and the future directions of coprime array signal processing are discussed, along with the theoretical basis and a technical reference for practical radar applications.
-
1. 引言
在传统跟踪方法中,目标假设为点目标,只占据一个分辨单元,但随着传感器分辨率的提高,目标将占据多个分辨单元,称该类目标为扩展目标。检测前跟踪算法是低信杂噪比(Signal To Clutter Noise Ratio, SCNR)下对目标进行处理的一种多帧信号积累方法,它使用传感器原始量测数据,并通过多次扫描量测数据的积累来提高信噪比,而粒子滤波(Particle Filter, PF)方法非常适合处理这类问题。Salmond[1]在2001年第1次明确提出PF-TBD的概念,并将该方法应用于凝视型光电传感器的单目标检测与跟踪处理中。2005年,Rutten[2]提出了一种针对观测噪声为Rayleigh情形下的PF-TBD算法。TSOU Haiping[3]提出了基于极大似然估计的扩展目标跟踪算法,研究了目标发生旋转时的跟踪问题。Gilholm K[4]利用多假设Kalman滤波来实现扩展目标跟踪,并分析了扩展目标中具有空间分布的散射点。Franken D[5]提出扩展目标模型为对称正定随机矩阵,并用Bayes方法分析和解决该问题。Ling Fan[6]建立椭圆模型,并在状态向量中加入目标存在变量和目标形状参数。针对雷达扩展目标,吴兆平[7]利用传感器获得的数据,确立更接近于实际的线性扩展模型,并推导出了扩展模型的似然比函数,同时,对原始的粒子滤波算法进行了优化。为实现隐身扩展目标的检测与跟踪,于洪波[8,9]将目标强度和空间长度引入状态向量,利用粒子滤波实现目标的跟踪和目标长度的估计。
上述问题只考虑Gaussian噪声下的微弱目标检测问题,没有考虑有杂波的情况。例如,当雷达工作于下视状态时,经过空时自适应(Space-Time Adaptive Processing, STAP)技术抑制杂波后的量测数据除了受噪声影响外还受剩余杂波的影响,使得传统基于噪声假设的量测模型不准确。同时,随着雷达性能的改善,研究者发现地(海)杂波出现了很长的波动,其杂波的统计特性明显偏离高斯分布。当高分辨雷达处于低视角观测时,通过考察地(海)杂波发现[10–12],Weibull分布能较好地刻画实际环境中的杂波统计特性。
针对杂波环境下微弱扩展目标的检测与跟踪问题,本文以杆状物体作为研究对象,对距离和方位进行划分,并给出不同区域上含有Weibull杂波的传感器量测模型。利用扩散函数,在点目标的基础上,推导了扩展目标的似然函数以及粒子权重的计算。在状态向量中加入目标存在状态以及目标形状参数,利用粒子滤波算法分别实现扩展目标状态和形状参数的检测和估计。仿真实验表明,杂波环境下基于粒子滤波的微弱扩展目标检测前跟踪算法具有较好的稳定性。
2. 系统模型
2.1 目标状态模型
考虑x-y平面内运动的杆状目标,目标状态转移具有如下形式:
xk+1=f(xk)+vk (1) 其中,目标的状态 xk=[xk˙xkyk˙ykIklk]T, (xk, yk), (˙xk,˙yk)分别表示目标中心的位置、速度,Ik, lk分别表示扩散目标的强度和空间长度,vk为过程噪声。用Ek对目标存在状态建模,且描述为2态Markov链,定义目标“新生”概率Pb Δ=P {Ek=1|Ek−1=0}和“死亡”概率Pd Δ=P{Ek=0|Ek–1=1},其中,Ek=0表示目标不存在,Ek=1表示目标存在,则Markov转换概率矩阵为:
ϕ=[1−PbPbPd1−Pd] (2) 2.2 量测模型
考虑经过脉冲压缩处理后的雷达距离-多普勒量测数据。假设距离和方位分别包含Nr和Na个单元,距离和方位的分辨率分别为Dr和Da,用 Ω Δ= {1,2,⋯,Nr}和K Δ= {1,2,⋯,Na}来表示距离和方位上的分辨单元集合。对于距离向[13],由于目标的扩展,目标回波所占距离单元表示如下:
ΩT={⌈rk−L(xk)/2Δr⌉,⋯,⌈rkΔr⌉,⋯,⌈rk+L(xk)/2Δr⌉} (3) 其中, ⌈X⌉表示向上求整, rk=√x2k+y2k, L(xk)表示目标距离向长度。
对于方位向,目标回波所占的方位单元表示如下:
KT={⌈ak−V(xk)/2Δr⌉,⋯,⌈akΔa⌉,⋯,⌈ak+V(xk)/2Δa⌉} (4) 其中, ak=arctan(yk/xk), V(xk)表示目标方位向长度。
假设雷达在相同扫描区域已经产生多帧距离-多普勒图像,zk(i, j)表示k时刻量测数据,具体形式为:
zk(i,j)={vk(i,j)+nk(i,j),i∈Ω,j∈K,Ek=0hk(i,j)+vk(i,j)+nk(i,j),i∈ΩT,j∈KT,Ek=1vk(i,j)+nk(i,j),i∈Ω∖ΩT,j∈K∖KT,Ek=1 (6) 式中, i=1,2,⋯,Nr,j=1,2,⋯,Na, hk(i, j)为目标在分辨单元(i, j)处的信号,nk(i, j)表示在(i, j)处的杂波,vk(i, j)为量测噪声,假设为零均值、方差为 2σ2的复高斯噪声。hk(i, j)表示散射点对分辨单元(i, j)的强度影响,一般情况下hk(i, j)可近似为2维高斯分布形式[14,15],则散射点在传感器分辨单元(i, j)的强度影响为[7]:
hk(i,j)≈ΔrΔaIk2πΣ2⋅exp{−(iΔr−xk)2+(jΔa−yk)22Σ2} (6) 其中 Σ为已知参数,表示传感器模糊斑点数量。k时刻的量测数据可表示为 zk={zk(i,j),i=1,···, Nr,j=1,···,Na},直到k时刻的完整量测数据集合表示为 Zk={zi,i=1,···,k}。
在实际雷达环境中,存在许多地物、海和云雨等各种杂波,经研究表明[12],Weibull分布在一定程度内可以与实际杂波吻合。因此,设 |n(i,j)k|符合以下Weibull分布,即
p(x)=pq(xq)p−1exp[−(xq)p],x≥0, p>0, q>0 (7) 其中,p为形状参数,q为尺度参数。
3. 杂波环境下扩展目标的PF-TBD算法
设 z′k(i,j)=|hk(i,j)+vk(i,j)|表示信号加噪声幅度,对于分辨单元(i, j),当Ek=1时, z′k(i,j)近似服从非中心的2阶卡方分布,即
p(z′k(i,j)|xk,Ek=1)=1σ2exp(−z′k(i,j)+hk(i,j)σ2)⋅I0(2√z′k(i,j)hk(i,j)σ2) (8) 当Ek=0时,分辨单元(i, j)内信号的幅度近似服从瑞利分布[13],即
p(z′k(i,j)|Ek=0)=|z′k(i,j)|σ2exp(−|z′k(i,j)|22σ2) (9) 在目标存在时,考虑Weibull杂波因子,量测值zk(i, j)的幅度服从非中心卡方分布与Weibull的混合分布,借用文献[16]的思想,根据混合概率密度公式
f(y)=ρf0(y,λ0)+(1−ρ)f1(y,θ), y>0 (10) 得到似然函数:
p(|zk(i,j)||xk,Ek=1)=ρ1σ2exp(−|zk(i,j)|+hk(i,j)σ2)⋅I0(2√|zk(i,j)|hk(i,j)σ2)+(1−ρ)pq(|zk(i,j)|q)p−1⋅exp[−(|zk(i,j)|q)p] (11) 同上,当Ek=0时,量测值zk(i, j)的幅度服从瑞利分布与Weibull分布的混合分布,则相应的似然函数为:
p(|zk(i,j)||Ek=0)=κ|zk(i,j)|σ2exp(−|zk(i,j)|22σ2)+(1−ε)pq(|zk(i,j)|q)p−1⋅exp[−(|zk(i,j)|q)p] (12) 式中, ρ和 ε为比例系数( ρ∈[0,1],ε∈[0,1])。
随着雷达分辨率的提高,目标的物理尺寸大于距离分辨率,这样就会引起目标在距离和方位上的线性扩展,则扩展目标的似然函数为[17]:
p(zk|xk,Ek=1)=∫p(zk|ˆx,Ek=1)p(ˆxk|xk)dˆxk (13) 其中,xk为中心点, ˆxk为扩展点; p(ˆxk|xk)表示从点xk扩展到 ˆxk的概率密度函数。
目标在距离和方位角发生2维线性扩展。设线性扩展目标长度为Nz,扩展目标的方向与观察者视线方向的夹角为 θ,则目标扩展后的坐标范围[7]为:
([lk−0.5Nztanθ,lk+0.5Nztanθ], [dk−0.5Nzcosθ,dk+0.5Nzcosθ]) (14) 其中,(lk, dk)表示扩展目标的中心位置。根据以上条件,则其似然函数为:
p(zk|xk,Ek=1)=∫nz/2−nz/2p(zk|xk,Ek=1)p(ˆxk|xk)dˆxk=1nz∫nz/2−nz/2(ρ1σ2exp(−zk(i−utanθ,j−ucosθ)+hk(i−utanθ,j−ucosθ)σ2)⋅I0(2√zk(i−utanθ,j−ucosθ)hk(i−utanθ,j−ucosθ)σ2)+(1−ρ)pq(zk(i−utanθ,j−ucosθ)q)p−1⋅exp[−(zk(i−utanθ,j−ucosθ)q)p])du 假设各个(i, j)内的zk(i, j)是独立的,似然函数可表示为:
p(|zk||xk,Ek=1)≈∏i∈Ci(xk)∏j∈Cj(xk)p(|zk(i,j)|xk,Ek=1)⋅∏i∉Ci(xk)∏j∉Cj(xk)p(|zk(i,j)|xk,Ek=0) (16) p(|zk||Ek=0)=Nr∏i=1Na∏j=1p(|zk(i,j)||Ek=0) (17) 式中,Ci(xk)和Cj(xk)表示(i, j)内受回波影响的集合。
假设该模型中扩展目标每一时刻仅有限个回波(散射点)时[18],设散射点个数为M时,则有:
p(zk|xk,Ek=1)≈1MM∑i=1p(zk|x(i)k) (18) 其中,xk(i)表示在某一时间k相互独立的散射点。
p(zk|xk,Ek=1)=n−1∑r=0(ρ1σ2exp(−zk(i−trtanθ,j−trcosθ)+hk(i−trtanθ,j−trcosθ)σ2)⋅I0(2√zk(i−trtanθ,j−trcosθ)hk(i−trtanθ,j−trcosθ)σ2)+(1−ρ)pq(zk(i−trtanθ,j−trcosθ)q)p−1⋅exp[−(zk(i−trtanθ,j−trcosθ)q)p])(xr+1−xr) (19) 定义似然比为:
L(|zk||xnk,Ek=1)=p(|zk||xnk,Ek=1)p(|zk||Ek=0) (20) L(|zk||Ek=0)=p(|zk||Ek=0)p(|zk||Ek=0)=1 (21) 因此,对状态为 xnk的目标,将式(8)、式(19)代入式(20)、式(21)中,可以计算出未归一化权重 ˜ωnk。
下面给出PF-TBD算法[19]。首先,引入混合状态向量 yk=[xTkEk]T。设在k–1时刻的联合PDF为 p(yk−1|Zk−1)可由粒子集 {ynk−1,ωnk−1}Nn=1来描述,N为粒子数量。则该算法运算步骤如下所示:
[{ynk}Nn=1]=PF−TBD[{ynk−1}Nn=1,zk] (22) 步骤1 计算目标的存在变量 [{Enk}Nn=1]目标存在变量转移 [{Enk−1}Nn=1,Φ];
步骤2 从Xkn中抽取M个散射点:
{χn,mk}Mm=1∼ψ(χk|Xnk) (23) 步骤3 FOR n=1:N
(1) 对“新生”(即 Enk−1=0,Enk=1)粒子采样 xnk∼pb(xk|zk);
(2) 对“存活”(即 Enk−1=1,Enk=1)粒子采样 xnk∼p(xk|xnk−1);
(3) 计算权重 ˜ωnk;
步骤4 用 xnk∼pb(xk|zk)替换权重比较低的 xnk∼p(xk|xnk−1),并计算相应的权重;
步骤5 归一化粒子权重, {ωnk=˜ωnk/N∑n=1˜ωnk}Nn=1 ;
步骤6 粒子重采样, [{ynk,1/N}Nn=1]=重采样 [{ynk,ωnk}Nn=1]。
目标在k时刻后验PDF为Pk ∧=P{Ek=1|Zk},因此
ˆPk=N∑n=1Enk/N, 0≤ˆP≤1 (24) 估计目标状态为:
ˆxk=N∑n=1(xnkEnk)/N∑n=1Enk (25) 4. 仿真实验
本节将通过仿真实验来说明在杂波环境下基于粒子滤波的雷达扩展目标TBD算法的有效性。假设目标的运动方程为:
xk=Fxk−1+wk−1 (26) 其中,
F=[110000010000001100000100000010000001] (27) 目标在x-y平面内做匀速直线运动,wk–1为零均值Gaussian噪声,其协方差Q为:
Q=[q13T3q12T20000q12T2q1T000000q13T3q12T20000q12T2q1T000000q2T000000q3T] (28) 其中,q1和q2分别表示运动和强度的过程噪声方差。设置q1=0.001, q2=0.01, q3=0.01设置T为1 s。其他相关参数设置为Dx=Dy=1, Σ=0.9, Nr=Na=20, αm=0.3,观测噪声方差为 σ2=1。取 x1=[0120I]T,在整个跟踪过程中,共有32帧。其中,第7到25帧时Ek=1,共19帧,而杂波和噪声从第1帧到第32帧一直存在。信杂噪比计算公式为:
SCNR=SV+C (29) 其中,S为信号功率,C为杂波功率,V为噪声功率。
图1模拟了散射点模型。根据散射点状态可知,从状态点到扩散点满足均匀分布。在图中,为了清楚地体现扩散效果,围绕着中心点取了8个扩散点。
图2给出了扩展目标在x-y平面上的运动轨迹,其中x轴、y轴只是相对值。在整个过程中,目标做匀速直线运动。目标的初始位置为(10, 2),设设杆长l为2,即占据2个分辨率单元。
滤波参数设置为:目标的pb和pd都取为0.1,初始存在概率 μ1=0.05,信号强度门限 γ=0.5, vmax=1, Imin=5, Imax=50, p=2。
图3是不同SCNR下扩展目标的平均存在概率图,设置门限为0.5,即目标的平均概率超过0.5,认为能够检测到目标,否则相反。从整体上来看,SCNR=3 dB, 6 dB, 9 dB和12 dB均能够检测到目标存在。SCNR=12 dB能够准确检测出目标出现时刻和消失时刻。SCNR=9 dB在目标出现时有2个时刻延迟,但能够准确检测到目标消失时刻。SCNR=3 dB, 6 dB时在目标出现时有2个时刻延迟,而目标消失时刻则有1个延时。
从图4可以看出,在目标开始出现时,不同SCNR下,误差都比较大,但经过几个时刻后,误差趋于稳定,但仍有一些波动。比较这4种不同情况,SCNR=3 dB的误差最大,这是比较符合实际情况。
图5是目标长度的随时间变化的RMSE,从图中可以看出,目标刚出现时,误差比较大,随着时间的积累,误差逐渐减少。比较不同SCNR下的误差值,可以得出,SCNR=12 dB时,误差最小,也比较平缓,SCNR=3 dB估计值不太理想,误差一直居高不小。SCNR=6 dB和SCNR=9 dB时,误差均可以接受。
5. 总结
针对杂波环境下的雷达扩展目标检测前跟踪问题,采用了含有Weibull杂波分布的杆状量测模型,运用散射点函数,推导出扩展目标的似然函数和粒子权重。基于粒子滤波,抽样得到散射点集合。实验结果表明,Weibull杂波环境下PF-TBD算法具有较好的稳定性。
-
-
[1] VON AULOCK W H. Properties of phased arrays[J]. Proceedings of the IRE, 1960, 48(10): 1715–1727. doi: 10.1109/JRPROC.1960.287523 [2] MAILLOUX R J. Phased array theory and technology[J]. Proceedings of the IEEE, 1982, 70(3): 246–291. doi: 10.1109/PROC.1982.12285 [3] WARD C, HARGRAVE P, and MCWHIRTER J. A novel algorithm and architecture for adaptive digital beamforming[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 338–346. doi: 10.1109/TAP.1986.1143818 [4] TALISA S H, O’HAVER K W, COMBERIATE T M, et al. Benefits of digital phased array radars[J]. Proceedings of the IEEE, 2016, 104(3): 530–543. doi: 10.1109/JPROC.2016.2515842 [5] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278 [6] FROST O and SULLIVAN T. High-resolution two-dimensional spectral analysis[C]. 1979 IEEE International Conference on Acoustics, Speech, and Signal Processing, Washington, USA, 1979: 673–676. [7] WAX M, SHAN T J, and KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817–827. doi: 10.1109/TASSP.1984.1164400 [8] LEMMA A N, VAN DER VEEN A J, and DEPRETTERE E F. Joint angle-frequency estimation using multi-resolution ESPRIT[C]. 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, USA, 1998: 1957–1960. [9] TSAKALIDES P, RASPANTI R, and NIKIAS C L. Angle/Doppler estimation in heavy-tailed clutter backgrounds[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 419–436. doi: 10.1109/7.766926 [10] LU Lu, LI G Y, LEE SWINDLEHURST A, et al. An overview of massive MIMO: Benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742–758. doi: 10.1109/JSTSP.2014.2317671 [11] LI Jian and STOICA P. MIMO Radar Signal Processing[M]. Hoboken: Wiley & Sons, 2009. [12] LI Jian, BLUM R S, STOICA P, et al. Introduction to the issue on MIMO radar and its applications[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 2–4. doi: 10.1109/JSTSP.2010.2040416 [13] 周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of Multi-Input Multi-Output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074 [14] 高敬坤, 邓彬, 秦玉亮, 等. 扫描MIMO阵列近场三维成像技术[J]. 雷达学报, 2018, 7(6): 676–684. doi: 10.12000/JR18102GAO Jingkun, DENG Bin, QIN Yuliang, et al. Near-field 3D SAR imaging techniques using a scanning MIMO array[J]. Journal of Radars, 2018, 7(6): 676–684. doi: 10.12000/JR18102 [15] CHEN Jinli, GU Hong, and SU Weimin. A new method for joint DOD and DOA estimation in bistatic MIMO radar[J]. Signal Processing, 2010, 90(2): 714–718. doi: 10.1016/j.sigpro.2009.08.003 [16] WEN Fangqing, ZHANG Zijing, WANG Ke, et al. Angle estimation and mutual coupling self-calibration for ULA-based bistatic MIMO radar[J]. Signal Processing, 2018, 144: 61–67. doi: 10.1016/j.sigpro.2017.09.021 [17] WEN Fangqing, XIONG Xiaodong, and ZHANG Zijing. Angle and mutual coupling estimation in bistatic MIMO radar based on PARAFAC decomposition[J]. Digital Signal Processing, 2017, 65: 1–10. doi: 10.1016/j.dsp.2017.02.011 [18] LIN Y C, LEE T S, PAN Yunhan, et al. Low-complexity high-resolution parameter estimation for automotive MIMO radars[J]. IEEE Access, 2019. doi: 10.1109/ACCESS.2019.2926413 [19] AMIRI R, BEHNIA F, and NOROOZI A. Efficient joint moving target and antenna localization in distributed MIMO radars[J]. IEEE Transactions on Wireless Communications, 2019, 18(9): 4425–4435. doi: 10.1109/TWC.2019.2924626 [20] MAO Chenxing, WEN Fangqing, ZHANG Zijing, et al. New approach for DOA estimation in MIMO radar with nonorthogonal waveforms[J]. IEEE Sensors Letters, 2019, 3(7): 7001104. [21] WEN Fangqing. Computationally efficient DOA estimation algorithm for MIMO radar with imperfect waveforms[J]. IEEE Communications Letters, 2019, 23(6): 1037–1040. doi: 10.1109/LCOMM.2019.2911285 [22] WEN Fangqing, XIONG Xiaodong, SU Jian, et al. Angle estimation for bistatic MIMO radar in the presence of spatial colored noise[J]. Signal Processing, 2017, 134: 261–267. doi: 10.1016/j.sigpro.2016.12.017 [23] FU Xiuwen, CAO Renzheng, and WEN Fangqing. A de-noising 2-D-DOA estimation method for uniform rectangle array[J]. IEEE Communications Letters, 2018, 22(9): 1854–1857. doi: 10.1109/LCOMM.2018.2849724 [24] WEN Fangqing, ZHANG Xinyu, and ZHANG Zijing. CRBs for direction-of-departure and direction-of-arrival estimation in collocated MIMO radar in the presence of unknown spatially coloured noise[J]. IET Radar, Sonar & Navigation, 2019, 13(4): 530–537. [25] WEN Fangqing, WU Lei, CAI Changxin, et al. Joint DOD and DOA estimation for bistatic MIMO radar in the presence of combined array errors[C]. The 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 174–178. [26] KLEMM R. Introduction to space-time adaptive processing[J]. Electronics & Communication Engineering Journal, 1999, 11(1): 5–12. [27] 王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4(2): 136–148. doi: 10.12000/JR14091WANG Ting, ZHAO Yongjun, and HU Tao. Overview of space-time adaptive processing for airborne Multiple-Input Multiple-Output radar[J]. Journal of Radars, 2015, 4(2): 136–148. doi: 10.12000/JR14091 [28] 谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586. doi: 10.12000/JR17073XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space time adaptive processing technique for airborne radar: An overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586. doi: 10.12000/JR17073 [29] FU Dongning, WEN Jun, XU Jingwei, et al. STAP-based airborne radar system for maneuvering target detection[J]. IEEE Access, 2019, 7: 62071–62079. doi: 10.1109/ACCESS.2019.2914224 [30] HE Tuan and ZHANG Yu. A MIMO radar STAP method based on sparse dictionary atomic selection[C]. The 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China, 2019: 433–436. [31] JIA Fengde, SUN Guohao, HE Zishu, et al. Grating-lobe clutter suppression in uniform subarray for airborne radar STAP[J]. IEEE Sensors Journal, 2019, 19(16): 6956–6965. doi: 10.1109/JSEN.2019.2912827 [32] LU Lei, ZHOU Chengwei, SHI Zhiguo, et al. Off-grid angle-Doppler estimation for space-time adaptive processing: A sequential approach[C]. 2019 IEEE/CIC International Conference on Communications in China, Changchun, China, 2019: 231–236. [33] VAIDYANATHAN P P and PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682 [34] WANG Huafei, WAN Liangtian, DONG Mianxiong, et al. Assistant vehicle localization based on three collaborative base stations via SBL-based robust DOA estimation[J]. IEEE Internet of Things Journal, 2019, 6(3): 5766–5777. doi: 10.1109/JIOT.2019.2905788 [35] WU Xiaohuan, ZHU Weiping, and YAN Jun. A high-resolution DOA estimation method with a family of nonconvex penalties[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4925–4938. doi: 10.1109/TVT.2018.2817638 [36] 周超伟, 李真芳, 王跃锟, 等. 联合多方位角调频率估计的星载SAR三维成像方法[J]. 雷达学报, 2018, 7(6): 696–704. doi: 10.12000/JR18094ZHOU Chaowei, LI Zhenfang, WANG Yuekun, et al. Space-borne SAR three-dimensional imaging by joint multiple azimuth angle Doppler frequency rate estimation[J]. Journal of Radars, 2018, 7(6): 696–704. doi: 10.12000/JR18094 [37] ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. DECOM: DOA estimation with combined MUSIC for coprime array[C]. 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 2013: 1–5. [38] SUN Fenggang, GAO Bin, CHEN Lizhen, et al. A low-complexity ESPRIT-based DOA estimation method for co-prime linear arrays[J]. Sensors, 2016, 16(9): 1367. doi: 10.3390/s16091367 [39] ZHANG Dong, ZHANG Yongshun, ZHENG Guimei, et al. Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[J]. Electronics Letters, 2017, 53(18): 1277–1279. doi: 10.1049/el.2017.2292 [40] YAN Fenggang, LIU Shuai, WANG Jun, et al. Fast DOA estimation using co-prime array[J]. Electronics Letters, 2018, 54(7): 409–410. doi: 10.1049/el.2017.2491 [41] LI Jianfeng, SHEN Mingwei, and JIANG Defu. Fast direction of arrival estimation using a sensor-saving coprime array with enlarged inter-element spacing[C]. The 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 179–183. [42] ZHENG Wang, ZHANG Xiaofei, GONG Pan, et al. DOA estimation for coprime linear arrays: An ambiguity-free method involving full DOFs[J]. IEEE Communications Letters, 2018, 22(3): 562–565. doi: 10.1109/LCOMM.2017.2787698 [43] LI Jianfeng and ZHANG Xiaofei. Direction of arrival estimation of Quasi-Stationary signals using unfolded coprime array[J]. IEEE Access, 2017, 5: 6538–6545. doi: 10.1109/ACCESS.2017.2695581 [44] PAL P and VAIDYANATHAN P P. Coprime sampling and the MUSIC algorithm[C]. Proceedings of 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 289–294. [45] LIU Chunlin and VAIDYANATHAN P P. Coprime arrays and samplers for space-time adaptive processing[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2364–2368. [46] ZHOU Chengwei and ZHOU Jinfang. Direction-of-arrival estimation with coarray ESPRIT for coprime array[J]. Sensors, 2017, 17(8): 1779. doi: 10.3390/s17081779 [47] TAN Zhao, ELDAR Y C, and NEHORAI A. Direction of arrival estimation using co-prime arrays: A super resolution viewpoint[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5565–5576. doi: 10.1109/TSP.2014.2354316 [48] PAL P and VAIDYANATHAN P P. On application of LASSO for sparse support recovery with imperfect correlation awareness[C]. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2012: 958–962. [49] PAL P and VAIDYANATHAN P P. Correlation-aware techniques for sparse support recovery[C]. 2012 IEEE Statistical Signal Processing Workshop, Ann Arbor, USA, 2012: 53–56. [50] LV Wanghan and WANG Huali. Joint DOA and frequency estimation based on spatio-temporal co-prime sampling[C]. 2015 International Conference on Wireless Communications & Signal Processing, Nanjing, China, 2015: 1–5. [51] QIN Si, ZHANG Y D, and AMIN M G. Multi-target localization using frequency diverse coprime arrays with coprime frequency offsets[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. [52] ZHANG Y D, AMIN M G, and HIMED B. Sparsity-based DOA estimation using co-prime arrays[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 3967–3971. [53] QIN Si, ZHANG Y D, AMIN M G, et al. Generalized coprime sampling of Toeplitz matrices for spectrum estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 81–94. doi: 10.1109/TSP.2016.2614799 [54] QIN Si, ZHANG Y D, and AMIN M G. Generalized coprime array configurations for direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6): 1377–1390. doi: 10.1109/TSP.2015.2393838 [55] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based two-dimensional DOA estimation for coprime array: From sum-difference coarray viewpoint[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5591–5604. doi: 10.1109/TSP.2017.2739105 [56] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Sparsity-based DOA estimation of coherent and uncorrelated targets with flexible MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5835–5848. doi: 10.1109/TVT.2019.2913437 [57] ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. DOA estimation by covariance matrix sparse reconstruction of coprime array[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2369–2373. [58] SHI Zhiguo, ZHOU Chengwei, GU Yujie, et al. Source estimation using coprime array: A sparse reconstruction perspective[J]. IEEE Sensors Journal, 2017, 17(3): 755–765. doi: 10.1109/JSEN.2016.2637059 [59] ZHENG Yunmei, SHI Zhiguo, LU Rongxing, et al. An efficient data-driven particle PHD filter for multitarget tracking[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2318–2326. doi: 10.1109/TII.2012.2228875 [60] GU Yujie, GOODMAN N A, HONG Shaohua, et al. Robust adaptive beamforming based on interference covariance matrix sparse reconstruction[J]. Signal Processing, 2014, 96: 375–381. doi: 10.1016/j.sigpro.2013.10.009 [61] GU Yujie and GOODMAN N A. Information-theoretic compressive sensing kernel optimization and Bayesian Cramér-Rao bound for time delay estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(17): 4525–4537. doi: 10.1109/TSP.2017.2706187 [62] YU Wenbin, CHEN Cailian, HE Tian, et al. Adaptive compressive engine for real-time electrocardiogram monitoring under unreliable wireless channels[J]. IET Communications, 2016, 10(6): 607–615. doi: 10.1049/iet-com.2015.0882 [63] DING Wenbo, YANG Fang, LIU Sicong, et al. Structured compressive sensing-based non-orthogonal time-domain training channel state information acquisition for multiple input multiple output systems[J]. IET Communications, 2016, 10(6): 685–690. doi: 10.1049/iet-com.2015.0697 [64] ZHOU Chengwei, GU Yujie, ZHANG Y D, et al. Compressive sensing-based coprime array direction-of-arrival estimation[J]. IET Communications, 2017, 11(11): 1719–1724. doi: 10.1049/iet-com.2016.1048 [65] GUO Muran, ZHANG Y D, and CHEN Tao. DOA estimation using compressed sparse array[J]. IEEE Transactions on Signal Processing, 2018, 66(15): 4133–4146. doi: 10.1109/TSP.2018.2847645 [66] GU Yujie, ZHANG Y D, and GOODMAN N A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 3181–3185. [67] BOUDAHER E, JIA Yong, AHMAD F, et al. Multi-frequency co-prime arrays for high-resolution direction-of-arrival estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3797–3808. doi: 10.1109/TSP.2015.2432734 [68] LIU Chunlin, VAIDYANATHAN P P, and PAL P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2639–2642. [69] HOSSEINI S M and SEBT M A. Array interpolation using covariance matrix completion of minimum-size virtual array[J]. IEEE Signal Processing Letters, 2017, 24(7): 1063–1067. doi: 10.1109/LSP.2017.2708750 [70] YANG Zai and XIE Lihua. On gridless sparse methods for line spectral estimation from complete and incomplete data[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3139–3153. doi: 10.1109/TSP.2015.2420541 [71] CANDÈS E J and FERNANDEZ-GRANDA C. Towards a mathematical theory of super-resolution[J]. Communications on Pure and applied Mathematics, 2014, 67(6): 906–956. doi: 10.1002/cpa.21455 [72] YANG Zai, XIE Lihua, and ZHANG Cishen. A discretization-free sparse and parametric approach for linear array signal processing[J]. IEEE Transactions on Signal Processing, 2014, 62(19): 4959–4973. doi: 10.1109/TSP.2014.2339792 [73] YANG Zai, LI Jian, STOICA P, et al. Sparse methods for direction-of-arrival estimation[M]. CHELLAPPA R and THEODORIDIS S. Academic Press Library in Signal Processing, Volume 7: Array, Radar and Communications Engineering. Amsterdam: Academic Press, 2018: 509–581. [74] WU Xiaohuan, ZHU Weiping, YAN Jun, et al. Two sparse-based methods for off-grid direction-of-arrival estimation[J]. Signal Processing, 2018, 142: 87–95. doi: 10.1016/j.sigpro.2017.07.004 [75] WU Xiaohuan, ZHU Weiping, and YAN Jun. Direction of arrival estimation for off-grid signals based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2016, 16(7): 2004–2016. doi: 10.1109/JSEN.2015.2508059 [76] LI Jianfeng, LI Yunxiang, and ZHANG Xiaofei. Two-dimensional off-grid DOA estimation using unfolded parallel coprime array[J]. IEEE Communications Letters, 2018, 22(12): 2495–2498. doi: 10.1109/LCOMM.2018.2872955 [77] PAN Jie, ZHOU Changling, LIU Bo, et al. Joint DOA and Doppler frequency estimation for coprime arrays and samplers based on continuous compressed sensing[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. [78] FAN Xing, ZHOU Chengwei, GU Yujie, et al. Toeplitz matrix reconstruction of interpolated coprime virtual array for DOA estimation[C]. The 2017 IEEE 85th Vehicular Technology Conference, Sydney, Australia, 2017: 1–5. [79] ZHOU Chengwei, GU Yujie, FAN Xing, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 5956–5971. doi: 10.1109/TSP.2018.2872012 [80] ZHOU Chengwei, SHI Zhiguo, GU Yujie, et al. Coarray interpolation-based coprime array DOA estimation via covariance matrix reconstruction[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 3479–3483. [81] ZHOU Chengwei, GU Yujie, SHI Zhiguo, et al. Off-grid direction-of-arrival estimation using coprime array interpolation[J]. IEEE Signal Processing Letters, 2018, 25(11): 1710–1714. doi: 10.1109/LSP.2018.2872400 [82] WU Xiaohuan, ZHU Weiping, and YAN Jun. A Toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8223–8237. doi: 10.1109/TVT.2017.2695226 [83] WU Xiaohuan, ZHU Weiping, and YAN Jun. A fast gridless covariance matrix reconstruction method for one- and two-dimensional direction-of-arrival estimation[J]. IEEE Sensors Journal, 2017, 17(15): 4916–4927. doi: 10.1109/JSEN.2017.2709329 [84] SHEN Yifan, ZHOU Chengwei, GU Yujie, et al.. Vandermonde decomposition of coprime coarray covariance matrix for DOA estimation[C]. Proceedings of the 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Hokkaido, Japan, 2017: 1–5. [85] DU Lin, YARDIBI T, LI Jian, et al. Review of user parameter-free robust adaptive beamforming algorithms[J]. Digital Signal Processing, 2009, 19(4): 567–582. doi: 10.1016/j.dsp.2009.02.001 [86] CHOI Y H. Subspace based adaptive beamforming method with low complexity[J]. Electronics Letters, 2011, 47(9): 529–530. doi: 10.1049/el.2011.0512 [87] FELDMAN D D and GRIFFITHS L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 1994, 42(4): 867–876. doi: 10.1109/78.285650 [88] LI Jian, STOICA P, and WANG Zhisong. On robust capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702–1715. doi: 10.1109/TSP.2003.812831 [89] BELL K L, EPHRAIM Y, and VAN TREES H L. A Bayesian approach to robust adaptive beamforming[J]. IEEE Transactions on Signal Processing, 2000, 48(2): 386–398. doi: 10.1109/78.823966 [90] VOROBYOV S A, GERSHMAN A B, and LUO Zhiquan. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865 [91] GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289 [92] ZHOU Chengwei, GU Yujie, SONG Wenzhan, et al. Robust adaptive beamforming based on DOA support using decomposed coprime subarrays[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2986–2990. [93] ZHOU Chengwei, GU Yujie, HE Shibo, et al. A robust and efficient algorithm for coprime array adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1099–1112. doi: 10.1109/TVT.2017.2704610 [94] REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893 [95] ZHOU Chengwei, SHI Zhiguo, and GU Yujie. Coprime array adaptive beamforming with enhanced degrees-of-freedom capability[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1357–1361. [96] HUANG Jiyan, WANG Peng, and WAN Qun. Sidelobe suppression for blind adaptive beamforming with sparse constraint[J]. IEEE Communications Letters, 2011, 15(3): 343–345. doi: 10.1109/LCOMM.2011.012511.102215 [97] GU Yujie, ZHOU Chengwei, GOODMAN N A, et al. Coprime array adaptive beamforming based on compressive sensing virtual array signal[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 2981–2985. [98] LIU Jianyan, ZHANG Yanmei, LU Yilong, et al. Augmented nested arrays with enhanced DOF and reduced mutual coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21): 5549–5563. doi: 10.1109/TSP.2017.2736493 [99] ZHENG Wang, ZHANG Xiaofei, and ZHAI Hui. Generalized coprime planar array geometry for 2-D DOA estimation[J]. IEEE Communications Letters, 2017, 21(5): 1075–1078. doi: 10.1109/LCOMM.2017.2664809 [100] YANG M, HAIMOVICH A M, CHEN Baixiao, et al. A new array geometry for DOA estimation with enhanced degrees of freedom[C]. 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016: 3041–3045. [101] RAZA A, LIU Wei, and SHEN Qing. Thinned coprime arrays for DOA estimation[C]. The 2017 25th European Signal Processing Conference, Kos, Greece, 2017: 395–399. [102] XU Haiyun, ZHANG Yankui, and BA Bin. Direction finding using coprime array with sensor gain and phase errors[C]. 2017 International Conference on Computer Technology, Electronics and Communication, Dalian, China, 2017: 880–885. [103] TIAN Ye, SHI Hongyin, and XU He. DOA estimation in the presence of unknown non-uniform noise with coprime array[J]. Electronics Letters, 2017, 53(2): 113–115. doi: 10.1049/el.2016.3944 [104] LI Conghui, GAN Lu, and LING Cong. 2D MIMO radar with coprime arrays[C]. The 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 612-616. [105] 王龙刚, 李廉林. 基于互质阵列雷达技术的近距离目标探测方法[J]. 雷达学报, 2016, 5(3): 244–253. doi: 10.12000/JR16022WANG Longgang and LI Lianlin. Short-range radar detection with (M, N)-coprime array configurations[J]. Journal of Radars, 2016, 5(3): 244–253. doi: 10.12000/JR16022 [106] SHI Junpeng, HU Guoping, ZHANG Xiaofei, et al. Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom[J]. IEEE Sensors Journal, 2018, 18(3): 1203–1212. doi: 10.1109/JSEN.2017.2782746 [107] YANG Minglei, SUN Lei, YUAN Xin, et al. A new nested MIMO array with increased degrees of freedom and hole-free difference coarray[J]. IEEE Signal Processing Letters, 2018, 25(1): 40–44. doi: 10.1109/LSP.2017.2766294 [108] LI Jianfeng, ZHANG Xiaofei, and JIANG Defu. DOD and DOA estimation for bistatic coprime MIMO radar based on combined ESPRIT[C]. Proceedings of 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. [109] ZHANG Zongyu, ZHOU Chengwei, GU Yujie, et al. FFT-based DOA estimation for coprime MIMO radar: A Hardware-Friendly approach[C]. Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5. [110] TAO Yu, ZHANG Gong, and LI Daren. Coprime sampling with deterministic digital filters in compressive sensing radar[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. [111] ZHANG Zongyu, ZHOU Chengwei, GU Yujie, et al. An IDFT approach for coprime array direction-of-arrival estimation[J]. Digital Signal Processing, 2019. doi: 10.1016/j.dsp.2019.05.006 [112] LI Jianfeng, SHEN Mingwei, and DING Ji. Direction of arrival estimation for co-prime MIMO radar based on unitary root-MUSIC[C]. The 2015 2nd International Conference on Wireless Communication and Sensor Network, Changsha, China, 2016: 307–315. [113] LI Jianfeng, JIANG Defu, and ZHANG Xiaofei. DOA estimation based on combined unitary ESPRIT for coprime MIMO radar[J]. IEEE Communications Letters, 2017, 21(1): 96–99. doi: 10.1109/LCOMM.2016.2618789 [114] JIA Yong, ZHONG Xiaoling, GUO Yong, et al. DOA and DOD estimation based on bistatic MIMO radar with co-prime array[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 394–397. [115] ZHANG Zongyu, ZHOU Chengwei, GU Yujie, et al. Efficient DOA estimation for coprime array via inverse discrete Fourier transform[C]. The 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5. [116] LI Jianfeng and JIANG Defu. Low-complexity propagator based two dimensional angle estimation for coprime MIMO radar[J]. IEEE Access, 2018, 6: 13931–13938. doi: 10.1109/ACCESS.2018.2813014 期刊类型引用(7)
1. 付丽梅. 基于选定区域颜色直方图的粒子滤波行人跟踪算法. 软件工程. 2021(07): 31-34 . 百度学术
2. 花文号,陈霄,薛安克. 基于权值选择的多雷达多目标检测前跟踪算法. 杭州电子科技大学学报(自然科学版). 2020(02): 34-39 . 百度学术
3. 冉星浩,杨路,李春波. 基于权值优选的改进二阶中心差分粒子滤波算法. 测控技术. 2020(07): 68-72 . 百度学术
4. 裴家正,黄勇,董云龙,何友,陈小龙. 杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法. 雷达学报. 2019(03): 355-365 . 本站查看
5. 裴家正,黄勇,董云龙,何友,陈小龙,陈唯实. 基于PHD的粒子滤波检测前跟踪改进算法. 雷达科学与技术. 2019(03): 263-270+279 . 百度学术
6. 张忠子. 基于改进粒子滤波跟踪算法的运动视频跟踪. 现代电子技术. 2019(15): 59-62 . 百度学术
7. 王经鹤,易伟,孔令讲. 组网雷达多帧检测前跟踪算法研究. 雷达学报. 2019(04): 490-500 . 本站查看
其他类型引用(6)
-