子空间干扰非高斯杂波的抑制

邹鲲 来磊 骆艳卜 李伟

邹鲲, 来磊, 骆艳卜, 等. 子空间干扰非高斯杂波的抑制[J]. 雷达学报, 2020, 9(4): 715–722. doi: 10.12000/JR19050
引用本文: 邹鲲, 来磊, 骆艳卜, 等. 子空间干扰非高斯杂波的抑制[J]. 雷达学报, 2020, 9(4): 715–722. doi: 10.12000/JR19050
ZOU Kun, LAI Lei, LUO Yanbo, et al. Suppression of non-Gaussian clutter from subspace interference[J]. Journal of Radars, 2020, 9(4): 715–722. doi: 10.12000/JR19050
Citation: ZOU Kun, LAI Lei, LUO Yanbo, et al. Suppression of non-Gaussian clutter from subspace interference[J]. Journal of Radars, 2020, 9(4): 715–722. doi: 10.12000/JR19050

子空间干扰非高斯杂波的抑制

DOI: 10.12000/JR19050
基金项目: 国家自然科学基金(61571456, 61603409),博士后基金(2017M623352, 2018T111148)
详细信息
    作者简介:

    邹 鲲(1976–),男,副教授,研究方向为统计信号处理,信号检测与估计,认知雷达信号处理

    来 磊(1983–),男,讲师,研究方向为UAV智能导航,集群协同

    骆艳卜(1980–),男,讲师,研究方向为无线电导航信号处理,雷达信号处理

    李 伟(1978–),男,副教授,研究方向为新体制雷达技术

    通讯作者:

    邹鲲 wyyxzk@163.com

  • 责任主编:赵拥军 Corresponding Editor: ZHAO Yongjun
  • 中图分类号: TN957.51

Suppression of Non-Gaussian Clutter from Subspace Interference

Funds: The National Natural Science Foundation of China (61571456, 61603409), The Postdoctoral Science Foundation of China (2017M623352, 2018T111148)
More Information
  • 摘要: 在复杂电磁环境下,往往需要在线估计杂波协方差矩阵,从而自适应调整滤波器权值,实现对杂波的有效抑制,这样有利于目标的估计、检测、定位或跟踪。该文考虑非高斯杂波模型,且部分杂波受到子空间信号干扰,并且有用信号也位于该子空间内。常规方法会导致自适应滤波器在目标多普勒频率处有较大的衰减,极大影响了有用信号的探测。为此提出了一种知识辅助的分层贝叶斯模型,采用变分贝叶斯推断方法获得杂波协方差矩阵的近似后验分布,利用后验均值设计杂波抑制滤波器,可以有效提高目标的探测性能。计算机仿真和实测数据验证结果表明,该方法能够有效抑制杂波,而在目标处有较好的探测能力。

     

  • 图  1  仿真数据η=17.5%时干扰识别与杂波抑制

    Figure  1.  Interference identification and clutter suppression with η=17.5% using simulated data

    图  2  仿真数据η=40.0%时干扰识别与杂波抑制

    Figure  2.  Interference identification and clutter suppression with η=40.0% using simulated data

    图  3  仿真数据η=77.5%时干扰识别与杂波抑制

    Figure  3.  Interference identification and clutter suppression with η=77.5% using simulated data

    图  4  实测数据(30 m分辨率)η=40.0%时干扰识别与杂波抑制

    Figure  4.  Interference identification and clutter suppression with η=40.0% using IPIX dataset (30 m resolution)

    图  5  实测数据(15 m分辨率)η=40.0%时干扰识别与杂波抑制

    Figure  5.  Interference identification and clutter suppression with η=40.0% using IPIX dataset (15 m resolution)

  • [1] XU Shuwen, SHUI Penglang, and YAN Xueying. Non-coherent detection of radar target in heavy-tailed sea clutter using bi-window non-linear shrinkage map[J]. IET Signal Processing, 2016, 10(9): 1031–1039. doi: 10.1049/iet-spr.2015.0564
    [2] GAO Lei, JING Zhongliang, LI Minzhe, et al. Robust adaptive filtering for extended target tracking with heavy-tailed noise in clutter[J]. IET Signal Processing, 2018, 12(7): 826–835. doi: 10.1049/iet-spr.2017.0249
    [3] LU Shuping, YI Wei, LIU Weijian, et al. Data-dependent clustering-CFAR detector in heterogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 476–485. doi: 10.1109/TAES.2017.2740065
    [4] ZHANG Wei, HE Zishu, LI Huiyong, et al. Beam-space reduced-dimension space-time adaptive processing for airborne radar in sample starved heterogeneous environments[J]. IET Radar, Sonar & Navigation, 2016, 10(9): 1627–1634. doi: 10.1049/iet-rsn.2015.0592
    [5] SHI Sainan and SHUI Penglang. Optimum coherent detection in homogenous K-distributed clutter[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1477–1484. doi: 10.1049/iet-rsn.2015.0602
    [6] HAO Chengpeng, ORLANDO D, FOGLIA G, et al. Knowledge-based adaptive detection: Joint exploitation of clutter and system symmetry properties[J]. IEEE Signal Processing Letters, 2016, 23(10): 1489–1493. doi: 10.1109/LSP.2016.2601931
    [7] MEHRNOUSH M and ROY S. Coexistence of WLAN network with radar: Detection and interference mitigation[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 655–667. doi: 10.1109/TCCN.2017.2762663
    [8] BESSON O and BIDON S. Adaptive processing with signal contaminated training samples[J]. IEEE Transactions on Signal Processing, 2013, 61(17): 4318–4329. doi: 10.1109/TSP.2013.2269048
    [9] COHEN D, MISHRA K V, and ELDAR Y C. Spectrum sharing radar: Coexistence via xampling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1279–1296. doi: 10.1109/TAES.2017.2780599
    [10] SOERGEL U. Radar Remote Sensing of Urban Areas[M]. Dordrecht: Springer, 2010. 1–47.
    [11] LEFAIDA S, SOLTANI F, and MEZACHE A. Radar sea-clutter modelling using fractional generalised Pareto distribution[J]. Electronics Letters, 2018, 54(16): 999–1001. doi: 10.1049/el.2018.5233
    [12] SANGSTON K J and FARINA A. Coherent radar detection in compound-Gaussian clutter: Clairvoyant detectors[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 42–63. doi: 10.1109/MAES.2016.150132
    [13] MITCHELL A E, SMITH G E, BELL K L, et al. Hierarchical fully adaptive radar[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1371–1379. doi: 10.1049/iet-rsn.2018.5339
    [14] HADAVI M, RADMARD M, and NAYEBI M M. Polynomial segment model for radar target recognition using Gibbs sampling approach[J]. IET Signal Processing, 2017, 11(3): 285–294. doi: 10.1049/iet-spr.2014.0455
    [15] TURLAPATY A and JIN Yuanwei. Multi-parameter estimation in compound Gaussian clutter by Variational Bayesian[J]. IEEE Transactions on Signal Processing, 2016, 64(18): 4663–4678. doi: 10.1109/TSP.2016.2573760
    [16] CONTE E, DE MAIO A, and GALDI C. Statistical analysis of real clutter at different range resolutions[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(3): 903–918. doi: 10.1109/TAES.2004.1337463
  • 加载中
图(5)
计量
  • 文章访问数:  2335
  • HTML全文浏览量:  901
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-11-25
  • 网络出版日期:  2020-08-28

目录

    /

    返回文章
    返回