基于微波光子学的分布式相参孔径雷达

李尚远 肖雪迪 郑小平

李尚远, 肖雪迪, 郑小平. 基于微波光子学的分布式相参孔径雷达[J]. 雷达学报, 2019, 8(2): 178–188. doi: 10.12000/JR19024
引用本文: 李尚远, 肖雪迪, 郑小平. 基于微波光子学的分布式相参孔径雷达[J]. 雷达学报, 2019, 8(2): 178–188. doi: 10.12000/JR19024
LI Shangyuan, XIAO Xuedi, and ZHENG Xiaoping. Distributed coherent aperture radar enabled by microwave photonics[J]. Journal of Radars, 2019, 8(2): 178–188. doi: 10.12000/JR19024
Citation: LI Shangyuan, XIAO Xuedi, and ZHENG Xiaoping. Distributed coherent aperture radar enabled by microwave photonics[J]. Journal of Radars, 2019, 8(2): 178–188. doi: 10.12000/JR19024

基于微波光子学的分布式相参孔径雷达

DOI: 10.12000/JR19024
基金项目: 国家自然科学基金(61690191, 61690192, 61420106003, 61621064)
详细信息
    作者简介:

    李尚远(1982–),男,博士,清华大学电子工程系助理研究员,研究方向为微波光子学。E-mail: syli@mail.tsinghua.edu.cn

    肖雪迪(1993–),女,清华大学电子工程系博士生,研究方向为基于微波光子学的分布式相参雷达。E-mail: xxd15@mails.tsinghua.edu.cn

    郑小平(1965–),男,博士,清华大学电子工程系教授,研究方向为微波光子学、光网络与光通信。E-mail: xpzheng@mail.tsinghua.edu.cn

    通讯作者:

    郑小平 xpzheng@mail.tsinghua.edu.cn

  • 中图分类号: TN957.51

Distributed Coherent Aperture Radar Enabled by Microwave Photonics

Funds: The National Natural Science Foundation of China (61690191, 61690192, 61420106003, 61621064)
More Information
  • 摘要: 分布式相参孔径雷达(DCAR)是利用多个空间分离的天线孔径,向同一区域辐射信号,实现空间电磁波相参合成的雷达系统,具有系统灵活、探测分辨力高、威力大、成本低等优势。结合微波光子技术在宽带信号产生、传输、处理等多方面的优势,可以使DCAR的性能得以充分发挥。该文介绍了清华大学在基于微波光子原理的高分辨DCAR方面的成果,借助微波光子技术,在接收相参模式下,产生了8.5~11.5 GHz, 0.5 Gbps编码速率的宽带正交调相线性调频波,距离分辨率优于0.05 m、正交性接近30 dB。在全相参模式下,发射波形可灵活切换为宽带相参线性调频波,实现全相参合成。系统产生的波形能满足DCAR各个工作模式的波形需求。实验中,在两部雷达的参与下,通过全相参合成,获得了8.3 dB的信噪比增益。

     

  • 图  1  分布式相参孔径雷达原理图[6]

    Figure  1.  Schematic diagram of the Distributed Coherent Aperture Radar[6]

    图  2  基于微波光子学原理的DCAR总体架构

    Figure  2.  The overall framework of the microwave photonics-based DCAR

    图  3  基于光子学的宽带DCAR系统

    Figure  3.  Schematic diagram of the photonic-based wideband DCAR system

    图  4  相位编码模块

    Figure  4.  Configuration of the phase coding module

    图  5  PCLFMW与LFMW的自相关和互相关结果

    Figure  5.  Auto-correlation and cross-correlation of the PCLFMW and LFMW

    图  6  雷达1和雷达2接收回波匹配滤波结果

    Figure  6.  The matched-filtering results of radar 1 and radar 2 receiving echo wave

    图  7  雷达1和雷达2匹配滤波的结果(蓝色/红色:发射相参模式/单发单收模式)

    Figure  7.  The matched-filtering results of radar 1 and radar 2 (Blue/red line: coherence-on transmit mode/monostatic mode)

    图  8  雷达1和雷达2匹配滤波的结果(蓝色/红色:全相参模式/单发单收模式)

    Figure  8.  The matched-filtering results of radar 1 and radar 2 (Blue/red line: full coherence mode/monostatic mode)

  • [1] COUTTS S, CUOMO K, MCHARG J, et al. Distributed coherent aperture measurements for next generation BMD radar[C]. Proceedings of the 4th IEEE Workshop on IEEE Sensor Array and Multichannel Processing, Waltham, MA, USA, 2006: 390–393. doi: 10.1109/SAM.2006.1706161.
    [2] 张亚婷, 黄志忠. 新体制雷达—分布式孔径相参合成雷达[J]. 火控雷达技术, 2014, 43(2): 43–47. doi: 10.3969/j.issn.1008-8652.2014.02.011

    ZHANG Yating and HUANG Zhizhong. A new system radar—Distributed aperture coherence-synthesizing radar[J]. Fire Control Radar Technology, 2014, 43(2): 43–47. doi: 10.3969/j.issn.1008-8652.2014.02.011
    [3] 殷丕磊. 地基宽带分布式全相参雷达技术研究[D]. [博士论文], 北京理工大学, 2016: 5–12.

    YIN Pilei. Research on ground-based wideband distributed coherent aperture radar[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2016: 5–12.
    [4] GAO Hongwei, CAO Zhe, WEN Shuliang, et al. Study on distributed aperture coherence-synthesizing radar with several experiment results[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 84–86. doi: 10.1109/CIE-Radar.2011.6159481.
    [5] 曹哲, 柴振海, 高红卫, 等. 分布式阵列相参合成雷达技术研究与试验[J]. 现代防御技术, 2012, 40(4): 1–11. doi: 10.3969/j.issn.1009-086x.2012.04.001

    CAO Zhe, CHAI Zhenhai, GAO Hongwei, et al. Technology and tests on distributed aperture coherence-synthesizing radar[J]. Modern Defence Technology, 2012, 40(4): 1–11. doi: 10.3969/j.issn.1009-086x.2012.04.001
    [6] CUOMO K M, COUTTS S D, MCHARG J C, et al. Wideband aperture coherence processing for next generation radar (NexGen)[R]. Lexington: MIT Lincoln Laboratory, 2004.
    [7] MIT Lincoln Laboratory. MIT Lincoln Laboratory 2008 annual report[EB/OL]. http://www.ll.mit.edu.
    [8] CZERWINSKI M G and USOFF J M. Development of the haystack ultrawideband satellite imaging radar[J]. Lincoln Laboratory Journal, 2014, 21(1): 28–44.
    [9] 高红卫, 曹哲, 鲁耀兵. 分布式阵列相参合成雷达基本研究与原理验证[C]. 第十二届全国雷达学术年会论文集, 武汉, 中国, 2012: 129–134.

    GAO Hongwei, CAO Zhe, and LU Yaobing. Fundamental Research and principle verification on distributed aperture coherence-synthesizing radar[C]. Proceedings of the 12th National Annual Conference on Radar, Wuhan, China, 2012: 129–134.
    [10] GAO Hongwei, CAO Zhe, LU Yaobing, et al. Development of distributed aperture coherence - synthetic radar technology[C]. Proceedings of 2013 IET International Radar Conference, Xi’an, China, 2013: 1–6. doi: 10.1049/cp.2013.0496.
    [11] 鲁耀兵, 张履谦, 周荫清, 等. 分布式阵列相参合成雷达技术研究[J]. 系统工程与电子技术, 2012, 35(8): 1657–1662. doi: 10.3969/j.issn.1001-506X.2013.08.12

    LU Yaobing, ZHANG Lüqian, ZHOU Yinqing, et al. Study on distributed aperture coherence-synthetic radar technology[J]. Systems Engineering and Electronics, 2012, 35(8): 1657–1662. doi: 10.3969/j.issn.1001-506X.2013.08.12
    [12] 鲁耀兵, 高红卫, 周宝亮. 分布式孔径相参合成雷达技术[J]. 雷达学报, 2017, 6(1): 55–64. doi: 10.12000/JR17014

    LU Yaobing, GAO Hongwei, and ZHOU Baoliang. Distributed aperture coherence-synthetic radar technology[J]. Journal of Radars, 2017, 6(1): 55–64. doi: 10.12000/JR17014
    [13] 周宝亮, 周东明, 高红卫, 等. 分布式孔径相参合成雷达系统设计与试验研究[J]. 现代防御技术, 2018, 46(3): 112–119. doi: 10.3969/j.issn.1009-086x.2018.03.017

    ZHOU Baoliang, ZHOU Dongming, GAO Hongwei, et al. Research on the distributed aperture coherence-synthetic radar system design and experiment[J]. Modern Defense Technology, 2018, 46(3): 112–119. doi: 10.3969/j.issn.1009-086x.2018.03.017
    [14] YIN Pilei, YANG Xiaopeng, LIU Quanhua, et al. Wideband distributed coherent aperture radar[C]. 2014 IEEE Radar Conference, Cincinnati, OH, USA, 2014: 1114–1117. doi: 10.1109/RADAR.2014.6875762.
    [15] 殷丕磊, 闫路, 张宗傲, 等. 基于频率步进的宽带分布式全相参雷达[J]. 北京理工大学学报, 2016, 36(7): 749–754. doi: 10.15918/j.tbit1001-0645.2016.07.017

    YIN Pilei, YAN Lu, ZHANG Zongao, et al. Wideband distributed coherent aperture radar based on step frequency signal[J]. Transactions of Beijing Institute of Technology, 2016, 36(7): 749–754. doi: 10.15918/j.tbit1001-0645.2016.07.017
    [16] 王锐. 分布式全相参雷达参数估计及ISAR成像方法研究[D]. [博士论文], 北京理工大学, 2015: 34–62.

    WANG Rui. Research on parameter estimation and ISAR imaging for distributed coherent radar[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2015: 34–62.
    [17] ZENG Tao, YIN Pilei, and LIU Quanhua. Wideband distributed coherent aperture radar based on stepped frequency signal: Theory and experimental results[J]. IET Radar, Sonar & Navigation, 2016, 10(4): 672–688. doi: 10.1049/iet-rsn.2015.0221
    [18] 殷丕磊, 杨小鹏, 曾涛. 分布式全相参雷达的相位差跟踪技术[J]. 信号处理, 2013, 29(3): 313–318. doi: 10.3969/j.issn.1003-0530.2013.03.004

    YIN Pilei, YANG Xiaopeng, and ZENG Tao. Tracking technology of phase difference for distributed aperture coherent radar[J]. Journal of Signal Processing, 2013, 29(3): 313–318. doi: 10.3969/j.issn.1003-0530.2013.03.004
    [19] 曾涛, 殷丕磊, 杨小鹏, 等. 分布式全相参雷达系统时间与相位同步方案研究[J]. 雷达学报, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104

    ZENG Tao, YIN Pilei, YANG Xiaopeng, et al. Time and phase synchronization for distributed aperture coherent radar[J]. Journal of Radars, 2013, 2(1): 105–110. doi: 10.3724/SP.J.1300.2013.20104
    [20] YANG Xiaopeng, YIN Pilei, and ZENG Tao. Time and phase synchronization for wideband distributed coherent aperture radar[C]. Proceedings of 2013 IET International Radar Conference, Xi’an, China, 2013: 1–5. doi: 10.1049/cp.2013.0241.
    [21] YIN Pilei, YANG Xiaopeng, ZENG Tao, et al. Robust time synchronization method based on step frequency signal for wideband distributed coherent aperture radar[C]. 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, USA, 2013: 383–388. doi: 10.1109/ARRAY.2013.6731859.
    [22] SUN Peilin, TANG Jun, and TANG Xiaowei. Cramer-Rao bound and signal-to-noise ratio gain in distributed coherent aperture radar[J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 217–225. doi: 10.1109/JSEE.2014.00026
    [23] 孙培林, 汤俊, 张宁. 分布式相参雷达相参性能的两种监控算法[J]. 清华大学学报(自然科学版), 2014, 54(4): 419–424. doi: 10.16511/j.cnki.qhdxxb.2014.04.007

    SUN Peilin, TANG Jun, and ZHANG Ning. Two algorithms for monitoring the coherence performance of distributed coherent radar systems[J]. Journal of Tsinghua University:Science and Technology, 2014, 54(4): 419–424. doi: 10.16511/j.cnki.qhdxxb.2014.04.007
    [24] SUN Peilin, TANG Jun, HE Qian, et al. Cramer-Rao bound of parameters estimation and coherence performance for next generation radar[J]. IET Radar, Sonar & Navigation, 2013, 7(5): 553–567. doi: 10.1049/iet-rsn.2012.0139
    [25] 刘兴华, 徐振海, 肖顺平. 分布式相参雷达几何布置约束条件[J]. 系统工程与电子技术, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09

    LIU Xinghua, XU Zhenhai, and XIAO Shunping. Geometric arrangement constraints of distributed coherent aperture radar[J]. Systems Engineering and Electronics, 2017, 39(8): 1723–1731. doi: 10.3969/j.issn.1001-506X.2017.08.09
    [26] LIU Xinghua, XU Zhenhai, LIU Xiang, et al. A clean signal reconstruction approach for coherently combining multiple radars[J]. EURASIP Journal on Advances in Signal Processing, 2018, 2018: 47. doi: 10.1186/s13634-018-0569-1
    [27] LIU Xinghua, XU Zhenhai, WANG Luoshengbin, et al. Dual-radar coherently combining: Generalised paradigm and verification example[J]. IET Radar, Sonar & Navigation, 2018. doi: 10.1049/iet-rsn.2018.5089
    [28] YANG Xiaopeng, YIN Pilei, ZENG Tao, et al. Phase difference estimation based on orthogonal signals for distributed coherent aperture radar[C]. 2013 International Conference on Radar, Adelaide, SA, Australia, 2013: 576–580. doi: 10.1109/RADAR.2013.6651986.
    [29] YIN Pilei, YIN Wen, LI Hui, et al. Estimation method of coherent efficiency of distributed coherent aperture radar based on cross-correlation[C]. 2015 IET International Radar Conference, Hangzhou, China, 2015: 36–40. doi: 10.1049/cp.2015.1416.
    [30] 米闯. 分布式阵列相参合成雷达的发射相参相关研究[D]. [硕士论文], 西安电子科技大学, 2014: 19–50.

    MI Chuang. Study on transmit coherence of distributed aperture coherence-synthetic radar[D]. [Master dissertation], Xidian University, 2014: 19–50.
    [31] 李晓波. 宽带分布式相参合成雷达关键问题研究[D]. [硕士论文], 西安电子科技大学, 2014: 5–25.

    LI Xiaobo. Study on key techniques of wideband distributed aperture coherence-synthesizing radar[D]. [Master dissertation], Xidian University, 2014: 5–25.
    [32] CAPMANY J and NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319–330. doi: 10.1038/nphoton.2007.89
    [33] YAO Jianping. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314–335. doi: 10.1109/JLT.2008.2009551
    [34] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [35] ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
    [36] ZHANG Fangzheng, GUO Qingshui, and PAN Shilong. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing[J]. Scientific Reports, 2017, 7: 13848. doi: 10.1038/s41598-017-14306-y
    [37] XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: JW2A. 144. doi: 10.1364/CLEO_AT.2017.JW2A.144.
    [38] LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [39] ZHANG Fangzheng, GUO Qingshui, WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
    [40] PENG Shaowen, LI Shangyuan, XUE Xiaoxiao, et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter[J]. Optics Express, 2018, 26(2): 1978–1987. doi: 10.1364/OE.26.001978
    [41] ZHANG Fangzheng, GAO Bingdong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
    [42] WANG Anle, WO Jianghai, LUO Xiong, et al. Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information[J]. Optics Express, 2018, 26(16): 20708–20717. doi: 10.1364/OE.26.020708
    [43] DENG Nan, LIU Zhangweiyi, WANG Xiaocheng, et al. Distribution of a phase-stabilized 100.02 GHz millimeter-wave signal over a 160 km optical fiber with 4.1×10–17 instability[J]. Optics Express, 2018, 26(1): 339–346. doi: 10.1364/OE.26.000339
    [44] RIDGWAY R W, DOHRMAN C L, and CONWAY J A. Microwave photonics programs at DARPA[J]. Journal of Lightwave Technology, 2014, 32(20): 3428–3439. doi: 10.1109/JLT.2014.2326395
    [45] ZOU Xihua, LU Bing, PAN Wei, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5): 711–734. doi: 10.1002/lpor.201600019
    [46] XIAO Xuedi, LI Shangyuan, PENG Shaowen, et al. Photonics-based wideband distributed coherent aperture radar system[J]. Optics Express, 2018, 26(26): 33783–33796. doi: 10.1364/OE.26.033783
    [47] WU Dexin, XUE Xiaoxiao, LI Shangyuan, et al. Photonic generation of multi-frequency phase-coded microwave signal based on a dual-output Mach-Zehnder modulator and balanced detection[J]. Optics Express, 2017, 25(13): 14516–14523. doi: 10.1364/OE.25.014516
  • 加载中
图(8)
计量
  • 文章访问数:  5107
  • HTML全文浏览量:  2633
  • PDF下载量:  500
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-17
  • 修回日期:  2019-04-02
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回