基于微波光子I/Q去斜接收的宽带线性调频雷达成像系统

杨悦 叶星炜 张方正 潘时龙

杨悦, 叶星炜, 张方正, 等. 基于微波光子I/Q去斜接收的宽带线性调频雷达成像系统[J]. 雷达学报, 2019, 8(2): 224–231. doi: 10.12000/JR19002
引用本文: 杨悦, 叶星炜, 张方正, 等. 基于微波光子I/Q去斜接收的宽带线性调频雷达成像系统[J]. 雷达学报, 2019, 8(2): 224–231. doi: 10.12000/JR19002
YANG Yue, YE Xingwei, ZHANG Fangzheng, et al. Broadband LFM radar imaging system based on microwave photonic I/Q de-chirping[J]. Journal of Radars, 2019, 8(2): 224–231. doi: 10.12000/JR19002
Citation: YANG Yue, YE Xingwei, ZHANG Fangzheng, et al. Broadband LFM radar imaging system based on microwave photonic I/Q de-chirping [J]. Journal of Radars, 2019, 8(2): 224–231. doi: 10.12000/JR19002

基于微波光子I/Q去斜接收的宽带线性调频雷达成像系统

DOI: 10.12000/JR19002
基金项目: 国家自然科学基金(61871214),江苏省自然科学基金(BK20180066)
详细信息
    作者简介:

    杨悦:杨   悦(1996–),男,江苏人,南京航空航天大学学士,南京航空航天大学博士生,研究方向为微波光子成像雷达。E-mail: yangyue96@nuaa.edu.cn

    叶星炜(1991–),男,福建人,南京航空航天大学学士,南京航空航天大学博士生,研究方向为微波光子成像雷达、光控宽带波束形成、光模数转换等。E-mail: yexw@nuaa.edu.cn

    张方正(1984–),男,河北人,南京航空航天大学电子信息工程学院副教授,硕士生导师。2013年在北京邮电大学取得通信与信息系统工学博士学位(2009年至2010年新加坡南洋理工大学联合培养博士)。2013年6月至今在南京航空航天大学电子信息工程学院工作(2017至2018年为日本东京大学访问学者)。研究领域涉及光通信、微波光子学、光信号处理等,主持国际自然科学基金、江苏省自然科学基金、研发预研项目等10余项科研项目。入选江苏省“六大人才高峰”高层次人才计划、江苏省青年科技人才托举工程。已发表SCI期刊论文75篇(第一/通信作者论文46篇),在国际会议作特邀报告10次,获得国际最佳会议论文奖2次,已授权国家发明专利(排名第一)5项。担任MWP2019、IEEE-RWS 2017-2019、ICAIT 2018-2019等国际会议技术委员会成员。E-mail: zhangfangzheng@nuaa.edu.cn

    潘时龙(1982–),男,安徽人,博士,教授。2008年在清华大学电子工程系获得博士学位,现为南京航空航天大学教授。主要研究基于微波光子技术的新体制雷达、无线通信、测量系统和集成微波光子学等。发表SCI论文210余篇,SCI他引2500余次,授权发明专利38项(含美国专利两项)。成果获日内瓦国际发明展特别金奖(最高奖项)、中国国际工业博览会大会银奖、中国光学工程学会创新科技奖一等奖、教育部自然科学奖二等奖等。曾入选国际光学学会会士(SPIE Fellow),英国工程技术学会会士(IET Fellow),国家万人计划科技创新领军人才。E-mail: pans@nuaa.edu.cn

    通讯作者:

    张方正  zhangfangzheng@nuaa.edu.cn

  • 中图分类号: TN958

Broadband LFM Radar Imaging System Based on Microwave Photonic I/Q De-chirping

Funds: The National Natural Science Foundation of China (61871214), The National Natural Science Foundation of Jiangsu Province (BK20180066)
More Information
  • 摘要: 该文提出一种新的基于微波光子I/Q去斜接收的宽带线性调频雷达成像系统方案。发射机利用微波光子倍频技术产生宽带线性调频信号,接收机利用偏分复用-双驱动马赫曾德尔调制器,将回波信号同时输入到两个不同偏振态的调制器上,并通过调节对应调制器的偏置电压在两偏振态之间引入90°相位差,从而实现微波光子I/Q去斜接收。此雷达在具备实时高分辨探测能力的同时,能区分参考点两侧的目标,解决了现有微波光子雷达接收机采用光子混频去斜接收中受镜频干扰导致距离向模糊的问题。该文首先论证了采用I/Q去斜接收的必要性,随后介绍了所提出的微波光子雷达结构与原理,最后开展了目标探测与逆合成孔径雷达成像的实验研究。该雷达工作在K波段,带宽为8 GHz。结果表明该系统可以有效解决镜频干扰引起的距离向模糊。

     

  • 图  1  去斜接收示意图

    Figure  1.  Schematic diagram of de-chirping

    图  2  基于微波光子I/Q去斜接收的雷达系统结构示意图

    Figure  2.  The structure of photonic-based radar with I/Q de-chirping

    图  3  发射信号时频关系图

    Figure  3.  Spectrogram of transmitted signal

    图  4  雷达系统光谱图

    Figure  4.  Optical spectra of radar system

    图  5  I/Q去斜后信号时域波形与频谱图

    Figure  5.  Temporal waveforms and frequency spectra after I/Q de-chirping

    图  6  雷达成像实验场景与成像结果

    Figure  6.  Experimental setup and the results of radar imaging

  • [1] 潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
    [2] ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
    [3] XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, California, 2017: 1–2. doi: 10.1364/CLEO_AT.2017.JW2A.144.
    [4] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [5] GHELFI P, LAGHEZZA F, SCOTTI F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2): 500–507. doi: 10.1109/JLT.2015.2482390
    [6] ZHOU Pei, ZHANG Fangzheng, GUO Qingshui, et al. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser[J]. Optics Express, 2016, 24(16): 18460–18467. doi: 10.1364/OE.24.018460
    [7] TONG Yitian, HAN Daming, CHENG Ran, et al. Photonics-based coherent wideband linear frequency modulation pulsed signal generation[J]. Optics Letter, 2018, 43(5): 1023–1026. doi: 10.1364/OL.43.001023
    [8] MIDDLETON C, MEREDITH S, PEACH R, et al. Photonic frequency conversion for wideband RF-to-IF down-conversion and digitization[C]. Proceedings of 2011 IEEE Avionics, Fiber- Optics and Photonics Technology Conference, San Diego, CA, USA, 2011: 115–116. doi: 10.1109/AVFOP.2011.6082154.
    [9] CHAN E H W and MINASIAN R A. Microwave photonic downconversion using phase modulators in a sagnac loop interferometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 3500208. doi: 10.1109/JSTQE.2013.2263119
    [10] GAO Yongsheng, WEN Aijun, ZHANG Huixing, et al. An efficient photonic mixer with frequency doubling based on a dual-parallel MZM[J]. Optics Communications, 2014, 321: 11–15. doi: 10.1016/j.optcom.2014.01.065
    [11] YE Xingwei, ZHANG Fangzheng, and PAN Shilong. Compact optical true time delay beamformer for a 2D phased array antenna using tunable dispersive elements[J]. Optics Letters, 2016, 41(17): 3956–3959. doi: 10.1364/OL.41.003956
    [12] LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [13] ZHANG Fangzheng, GUO Qingshui, WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
    [14] PENG Shaowen, LI Shangyuan, XUE Xiaoxiao, et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digitalto-analong comverter[J]. Opticis Express, 2018, 26(2): 1978–1987. doi: 10.1364/OE.26.001978
    [15] ZHANG Fangzheng, GUO Qingshui, and PAN Shilong. Photonics-based real-time ultra-high-range-resolution radar with broadband signal generation and processing[J]. Scientific Reports, 2017, 7: 13848. doi: 10.1038/s41598-017-14306-y
    [16] ZHANG Fangzheng, GUO Qingshui, ZHANG Ying, et al. Photonics-based real-time and high-resolution ISAR imaging of non-cooperative target[J]. Chinese Optics Letters, 2017, 15(11): 112801. doi: 10.3788/col201715.112801
    [17] ZHANG Fangzheng, GAO Bingdong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
    [18] YE Xingwei, ZHANG Fangzheng, YANG Yue, et al. Photonics-based radar transceiver for full-polarimetric inverse synthetic aperture imaging[C]. Proceedings of 2018 International Topical Meeting on Microwave Photonics (MWP), Toulouse, France, 2018: 1–4. doi: 10.1109/MWP.2018.8552850.
    [19] MENG Ziyi, LI Jianqiang, YIN Chunjing, et al. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer[J]. Optics Express, 2017, 25(18): 22055–22065. doi: 10.1364/OE.25.022055
    [20] GAO Yongshen, WEN Aijun, ZHANG Wu, et al. Ultra-wideband photonic microwave I/Q mixer for zero-IF receiver[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(11): 4513–4525. doi: 10.1109/tmtt.2017.2695184
    [21] RICHARDS M A. Fundamentals of Radar Signal Processing[M]. 2nd ed., New York: McGraw-Hill, 2014: 87–112.
  • 加载中
图(6)
计量
  • 文章访问数:  3489
  • HTML全文浏览量:  1203
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 修回日期:  2019-03-11
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回