一种基于微波光子超高分辨雷达机翼振动参数估计方法

符吉祥 邢孟道 徐丹 王安乐

符吉祥, 邢孟道, 徐丹, 等. 一种基于微波光子超高分辨雷达机翼振动参数估计方法[J]. 雷达学报, 2019, 8(2): 232–242. doi: 10.12000/JR19001
引用本文: 符吉祥, 邢孟道, 徐丹, 等. 一种基于微波光子超高分辨雷达机翼振动参数估计方法[J]. 雷达学报, 2019, 8(2): 232–242. doi: 10.12000/JR19001
FU Jixiang, XING Mengdao, XU Dan, et al. Vibration-parameters estimation method for airplane wings based on microwave-photonics ultrahigh-resolution radar[J]. Journal of Radars, 2019, 8(2): 232–242. doi: 10.12000/JR19001
Citation: FU Jixiang, XING Mengdao, XU Dan, et al. Vibration-parameters estimation method for airplane wings based on microwave-photonics ultrahigh-resolution radar[J]. Journal of Radars, 2019, 8(2): 232–242. doi: 10.12000/JR19001

一种基于微波光子超高分辨雷达机翼振动参数估计方法

DOI: 10.12000/JR19001
基金项目: 国家杰出青年自然基金(61825105)
详细信息
    作者简介:

    符吉祥(1992–),男,安徽蚌埠人,博士生,研究方向为ISAR运动补偿和成像。E-mail: jixiang_xd@126.com

    邢孟道(1975–),男,浙江绍兴人,博士,教授,西安电子科技大学前沿交叉研究院副院长,研究方向为雷达成像、动目标检测、目标识别。E-mail: xmd@xidian.edu.cn

    徐丹:徐   丹(1990–),女,陕西咸阳人,博士生,研究方向为3维ISAR图像重构、电磁成像。 E-mail: 1045759961@qq.com

    王安乐(1988–),男,山东临沂人,博士,中国人民解放军空军预警学院讲师,研究方向为微波光子雷达、光生微波基准信号等。E-mail: anlehit@163.com

    通讯作者:

    邢孟道  xmd@xidian.edu.cn

  • 中图分类号: TN957

Vibration-parameters Estimation Method for Airplane Wings Based on Microwave-photonics Ultrahigh-resolution Radar

Funds: The National Science Fund for Distinguished Young Scholars (61825105)
More Information
  • 摘要: 机翼在飞机运动不平稳状态下存在振动,在微波光子超高分辨雷达观测下,这种振动会造成机翼难以聚焦,针对这一难题,该文提出一种基于微波光子超高分辨雷达的机翼振动参数估计方法。首先通过粗成像将机身和机翼回波进行分离,再通过对机身成像和定标结果估计雷达视线角(LOS)。然后对机翼进行子孔径序列成像,提取散射点的距离和多普勒变化曲线,再联合雷达LOS以及距离和多普勒曲线对振动参数进行粗估计,最后通过修正的极坐标格式算法(MPFA)以及构造最小熵优化函数对振动参数进行精估计。该文首次提出了修正的极坐标格式算法,其能够对复杂运动的目标进行距离和方位向的解耦,如震动的机翼和摇摆的舰船等。仿真和实测数据的处理结果验证了该方法的有效性和实用性。

     

  • 图  1  微波光子实测飞机目标1维距离像

    Figure  1.  One dimensional range profile of airplane measured by microwave photonic radar

    图  2  飞机运动几何模型

    Figure  2.  Geometry model of airplane

    图  3  转台模型

    Figure  3.  Turntable model

    图  4  飞机粗成像结果

    Figure  4.  Coarse imaging results of airplane

    图  5  算法流程图

    Figure  5.  Flow chart of the proposed algorithm

    图  6  飞机散射点模型

    Figure  6.  Scatter model of airplane

    图  7  机身聚焦成像定标结果

    Figure  7.  Focused and scaled result of airplane body

    图  9  提取的不同散射点的多普勒变化曲线

    Figure  9.  Extracted Doppler curves of different scatterers

    图  10  提取的不同散射点的距离变化曲线

    Figure  10.  Extracted range curves of different scatterers

    图  11  图像熵值优化函数代价曲面

    Figure  11.  Cost surface of entropy optimization function

    图  12  机翼区域精细化处理前后结果对比

    Figure  12.  Before and after accurate processing of airplane wings

    图  8  不同时刻机翼子孔径成像结果

    Figure  8.  Sub-aperture imaging results of airplane wing at different time

    图  13  实测数据机身聚焦成像定标结果

    Figure  13.  Focused and scaled airplane body result of the measured data

    图  14  不同子孔径机翼成像结果序列图

    Figure  14.  Airplane wing imaging results of different sub-apertures

    图  15  提取的散射点的距离和多普勒变化曲线

    Figure  15.  Range and Doppler curves of extracted scatter

    图  16  图像熵值优化函数代价曲面

    Figure  16.  Cost surface of image entropy optimization function

    图  17  机翼区域精细化处理前后结果对比

    Figure  17.  Before and after accurate processing of airplane wings

    表  1  仿真雷达参数

    Table  1.   Simulation radar parameters

    信号带宽(GHz)脉冲宽度(μs)载频(GHz)PRF (Hz)采样率(Hz)脉冲数振动角(°)振动频率(Hz)初相(°)
    1015035666.665008192110
    下载: 导出CSV

    表  2  仿真数据机翼振动参数估计结果

    Table  2.   Vibration parameters estimation result of simulation data

    振动频率(Hz)振动角(°)振动初相(°)
    实际值估计值实际值估计值实际值估计值
    10.9910.980–0.18
    下载: 导出CSV

    表  3  实测数据机翼振动参数估计结果

    Table  3.   Vibration parameters estimation result of measured data

    振动频率(Hz)振动角(°)振动初相(°)
    2.480.0712.93
    下载: 导出CSV
  • [1] 潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52.

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52.
    [2] MCKINNEY J D. Technology: Photonics illuminates the future of radar[J]. Nature, 2014, 507(7492): 310–311. doi: 10.1038/507310a
    [3] CAPMANY J and NOVAK D. Microwave photonics combines two worlds[J]. Nature Photonics, 2007, 1(6): 319–330. doi: 10.1038/nphoton.2007.89
    [4] YAO Yao, ZHANG Fangzheng, ZHANG Ying, et al. Demonstration of ultra-high-resolution photonics-based Ka-band inverse synthetic aperture radar imaging[C]. Optical Fiber Communication Conference, San Diego, California, USA, 2018: Th3G.5. doi: 10.1364/OFC.2018.Th3G.5.
    [5] CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873
    [6] 李彦兵, 张曦文, 李飞, 等. 一种大加速度机动目标微动参数估计方法[J]. 电子与信息学报, 2017, 39(1): 82–87. doi: 10.11999/JEIT160261

    LI Yanbing, ZHANG Xiwen, LI Fei, et al. Estimation of micro-motion feature for large accelerated target[J]. Journal of Electronics &Information Technology, 2017, 39(1): 82–87. doi: 10.11999/JEIT160261
    [7] 张翼, 朱玉鹏, 黎湘. 基于微多普勒特征的目标微动参数估计[J]. 信号处理, 2009, 25(7): 1120–1124. doi: 10.3969/j.issn.1003-0530.2009.07.022

    ZHANG Yi, ZHU Yupeng, and LI Xiang. Micro-motion parameter estimation of ballistic missile target based on micro-Doppler feature[J]. Signal Processing, 2009, 25(7): 1120–1124. doi: 10.3969/j.issn.1003-0530.2009.07.022
    [8] ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letter, 2009, 6(4): 204–208. doi: 10.1109/LGRS.2008.2010562
    [9] PENG Shibao, XU Jia, WANG Libao, et al. A new ISAR range alignment method based on particle swarm optimizer[C]. Proceedings of 2009 Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, Shaanxi, China, 2009: 618–621. doi: 10.1109/APSAR.2009.5374278.
    [10] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 1–336.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 1–336.
    [11] ZHANG Lei, SHENG Jialian, DUAN Jia, et al. Translational motion compensation for ISAR imaging under low SNR by minimum entropy[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013(1): 33. doi: 10.1186/1687-6180-2013-33
    [12] 符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303

    FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
    [13] LI Xiaolong, CUI Guolong, YI Wei, et al. Range migration correction for maneuvering target based on generalized keystone transform[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015: 95–99. doi: 10.1109/RADAR.2015.7130977.
    [14] GAO Jingkun, DENG Bin, QIN Yuliang, et al. Efficient terahertz wide-angle NUFFT-based inverse synthetic aperture imaging considering spherical wavefront[J]. Sensors, 2016, 16(12): E2120. doi: 10.3390/s16122120
    [15] MA Zheng, ZHANG Yong, and ZHOU Zhennan. An improved semi-Lagrangian time splitting spectral method for the semi-classical Schrödinger equation with vector potentials using NUFFT[J]. Applied Numerical Mathematics, 2017, 111: 144–159. doi: 10.1016/j.apnum.2016.08.015
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  3713
  • HTML全文浏览量:  988
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 修回日期:  2019-03-16
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回