基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法

杨利超 高悦欣 邢孟道 盛佳恋

杨利超, 高悦欣, 邢孟道, 等. 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法[J]. 雷达学报, 2019, 8(2): 215–223. doi: 10.12000/JR18120
引用本文: 杨利超, 高悦欣, 邢孟道, 等. 基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法[J]. 雷达学报, 2019, 8(2): 215–223. doi: 10.12000/JR18120
YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120
Citation: YANG Lichao, GAO Yuexin, XING Mengdao, et al. High resolution microwave photonics radar real-time imaging based on generalized keystone and frequency scaling[J]. Journal of Radars, 2019, 8(2): 215–223. doi: 10.12000/JR18120

基于广义keystone和频率变标的微波光子ISAR高分辨实时成像算法

doi: 10.12000/JR18120
基金项目: 国家重点研发计划(2017YFC1405600),上海市自然科学基金(17ZR1428700)
详细信息
    作者简介:

    杨利超(1993–),男,浙江嘉兴人,博士生,研究方向为ISAR运动补偿和成像。E-mail: ylc9310@163.com

    高悦欣(1985–),男,陕西西安人,博士生,研究方向为ISAR运动补偿和成像。E-mail: cngreader@163.com

    邢孟道(1975–),男,浙江绍兴人,博士,教授,西安电子科技大学前沿交叉研究院副院长。研究方向为雷达成像、动目标检测、目标识别。E-mail: xmd@xidian.edu.cn

    盛佳恋(1987–),女,浙江嘉兴人,博士,研究方向为SAR/ISAR成像、太赫兹雷达信号处理。E-mail: SJL_jialian@163.com

    通讯作者:

    杨利超 ylc9310@163.com

  • 中图分类号: TN957.5

High Resolution Microwave Photonics Radar Real-time Imaging Based on Generalized Keystone and Frequency Scaling

Funds: National Key R&D Program of China (2017YFC1405600), The Natural Science Foundation of Shanghai (17ZR1428700)
More Information
  • 摘要: 微波光子雷达具有发射大带宽和高载频信号的能力,可实现2维高分辨的逆合成孔径雷达(ISAR)成像。研究相应的实时成像算法具有重要意义。但信号的高距离分辨率特点使得距离弯曲的空变性无法忽略,高载频特性使得相位历程的空变性无法忽略,导致传统的多普勒域实时成像算法成像效果差。另外,计算量较大的波束域成像算法不适用于大数据量的微波光子雷达信号。因此该文提出一种高效率的微波光子ISAR高分辨实时成像算法,该算法首先利用广义楔石变换(GKT)提取特显点相位,进而由相位调频率反演目标横向速度,最后利用速度估计结果结合频率变标(FS)算法完成空变的距离弯曲校正和方位匹配滤波成像。仿真和实测数据的处理结果验证了该算法的有效性。

     

  • 图  1  目标运动示意图

    Figure  1.  The geometry of target movement

    图  2  回波包络响应曲线

    Figure  2.  Echo envelope curve in azimuth

    图  3  算法流程图

    Figure  3.  Flow diagram of proposed algorithm

    图  4  2次相位拟合结果

    Figure  4.  Quadratic phase curve fitting

    图  5  本文算法仿真处理结果

    Figure  5.  Simulation processing results with proposed algorithm

    图  6  传统RD算法仿真处理结果

    Figure  6.  Simulation processing results with traditional RD process

    图  7  不同信噪比下速度估计的均方误差曲线

    Figure  7.  MSE curve of velocity estimation

    图  8  2次相位拟合结果

    Figure  8.  Quadratic phase curve fitting

    图  9  本文算法实测处理结果

    Figure  9.  Real data processing results with proposed algorithm

    图  10  传统RD算法实测处理结果

    Figure  10.  Real data processing results with traditional RD process

    表  1  仿真数据参数

    Table  1.   Simulation parameters

    信号带宽(GHz)载频(GHz)脉冲宽度(μs)脉冲重复频率(Hz)采样率(MHz)参考斜距(m)目标速度(m/s)观测时间(s)
    1035 150 2000500 100065 0.5
    下载: 导出CSV

    表  2  实测数据参数

    Table  2.   Measured data parameters

    信号带宽(GHz)载频脉冲宽度(μs)数据采样率(MHz)脉冲重复频率(Hz)成像距离(m)观测时间(s)
    10Ka波段15050066707500.6
    下载: 导出CSV
  • [1] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 6–70.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Techniques[M]. Beijing: Publishing House of Electronics Industry, 2005: 6–70.
    [2] 潘时龙, 张亚梅. 微波光子雷达及关键技术[J]. 科技导报, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004

    PAN Shilong and ZHANG Yamei. Microwave photonic radar and key technologies[J]. Science &Technology Review, 2017, 35(20): 36–52. doi: 10.3981/j.issn.1000-7857.2017.20.004
    [3] PÉREZ D, GASULLA I, CAPMANY J, et al. Integrated microwave photonics: The quest for the universal programmable processor[C]. 2016 IEEE Photonics Society Summer Topical Meeting Series, Newport Beach, CA, USA, 2016: 144–145. doi: 10.1109/PHOSST.2016.7548751.
    [4] WU Tingwei, ZHANG Chongfu, ZHOU Heng, et al. Photonic microwave waveforms generation based on frequency and time-domain synthesis[J]. IEEE Access, 2018, 6: 34372–34379. doi: 10.1109/ACCESS.2018.2842250
    [5] GRODENSKY D, KRAVITZ D, and ZADOK A. Ultra-wideband microwave-photonic noise radar based on optical waveform generation[J]. IEEE Photonics Technology Letters, 2012, 24(10): 839–841. doi: 10.1109/LPT.2012.2188889
    [6] XIAO Xuedi, LI Shangyuan, CHEN Boyu, et al. A microwave photonics-based inverse synthetic aperture radar system[C]. 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.
    [7] GUO Qingshui, ZHANG Fangzheng, WANG Ziqian, et al. High-resolution and real-time inverse synthetic aperture imaging based on a broadband microwave photonic radar[C]. 2017 International Topical Meeting on Microwave Photonics, Beijing, China, 2017: 1–3.
    [8] CHEN C C and ANDREWS H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2–14. doi: 10.1109/TAES.1980.308873
    [9] ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562
    [10] 徐刚, 杨磊, 张磊, 等. 一种加权最小熵的ISAR自聚焦算法[J]. 电子与信息学报, 2011, 33(8): 1809–1815. doi: 10.3724/SP.J.1146.2010.01153

    XU Gang, YANG Lei, ZHANG Lei, et al. Weighted minimum entropy autofocus algorithm for ISAR imaging[J]. Journal of Electronics &Information Technology, 2011, 33(8): 1809–1815. doi: 10.3724/SP.J.1146.2010.01153
    [11] 符吉祥, 孙光才, 邢孟道. 一种大转角ISAR两维自聚焦平动补偿方法[J]. 电子与信息学报, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303

    FU Jixiang, SUN Guangcai, and XING Mengdao. A two dimensional autofocus translation compensation method for wide-angle ISAR imaging[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2889–2898. doi: 10.11999/JEIT170303
    [12] HUANG Penghui, LIAO Guisheng, YANG Zhiwei, et al. Ground maneuvering target imaging and high-order motion parameter estimation based on second-order keystone and generalized Hough-HAF transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1): 320–335. doi: 10.1109/TGRS.2016.2606436
    [13] LI Xiaolong, CUI Guolong, YI Wei, et al. Range migration correction for maneuvering target based on generalized keystone transform[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015, 0095–0099. doi: 10.1109/RADAR.2015.7130977.
    [14] MITTERMAYER J, MOREIRA A, and LOFFELD O. Spotlight SAR data processing using the frequency scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2198–2214. doi: 10.1109/36.789617
    [15] ZHU Daiyin, SHEN Mingwei, and ZHU Zhaoda. Some aspects of improving the frequency scaling algorithm for dechirped SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1579–1588. doi: 10.1109/TGRS.2008.916468
    [16] 许志伟, 张磊, 邢孟道. 基于特征配准的ISAR图像方位定标方法[J]. 电子与信息学报, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590

    XU Zhiwei, ZHANG Lei, and XING Mengdao. A novel cross-range scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics &Information Technology, 2014, 36(9): 2173–2179. doi: 10.3724/SP.J.1146.2013.01590
    [17] LI Y, WU R, XING M, et al. Inverse synthetic aperture radar imaging of ship target with complex motion[J]. IET Radar, Sonar & Navigation, 2008, 2(6): 395–403. doi: 10.1049/iet-rsn:20070101
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2583
  • HTML全文浏览量:  950
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-03-26
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回