[1] |
张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
|
[2] |
李彦兵, 杜兰, 刘宏伟, 等. 基于微多普勒特征的地面目标分类[J]. 电子与信息学报, 2010, 32(12): 2848–2853. doi: 10.3724/SP.J.1146.2010.00128LI Yanbing, DU Lan, LIU Hongwei, et al. Ground targets classification based on micro-doppler effect[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2848–2853. doi: 10.3724/SP.J.1146.2010.00128
|
[3] |
MELVIN W L and SCHEER J A. Principles of Modern Radar: Advanced Techniques[M]. Edison, NJ, Scitech Publishing, 2012. doi: 10.1049/SBRA020E.
|
[4] |
曹思扬, 郑元芳. 雷达波形研究发展现况与趋势(英文)[J]. 雷达学报, 2014, 3(5): 603–621. doi: 10.3724/SP.J.1300.2014.14044CAO Siyang and ZHENG Yuanfang. Recent developments in radar waveforms[J]. Journal of Radars, 2014, 3(5): 603–621. doi: 10.3724/SP.J.1300.2014.14044
|
[5] |
李堃, 梁兴东, 陈龙永, 等. 基于LFMCW体制的分布式SAR高分辨率成像方法研究[J]. 电子与信息学报, 2017, 39(2): 437–443. doi: 10.11999/JEIT160274LI Kun, LIANG Xingdong, CHEN Longyong, et al. Signal model and high-resolution imaging approach for distributed SAR based on LFMCW signals[J]. Journal of Electronics &Information Technology, 2017, 39(2): 437–443. doi: 10.11999/JEIT160274
|
[6] |
CAPUTI W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(2): 269–278. doi: 10.1109/TAES.1971.310366
|
[7] |
ZHOU Zhengshu, CACCETTA P, SIMS N C, et al. Multiband SAR data for rangeland pasture monitoring[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 170–173. doi: 10.1109/IGARSS.2016.7729035.
|
[8] |
TRIZNA D B, BACHMANN C, SLETTEN M, et al. Projection pursuit classification of multiband polarimetric SAR land images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2380–2386. doi: 10.1109/36.964974
|
[9] |
LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optical Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
|
[10] |
ZHANG Fangzheng, GUO Qingshui. WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
|
[11] |
ZHANG Fangzheng, GAO Bindong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
|
[12] |
ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
|
[13] |
SCOTTI F, LAGHEZZA F, and BOGONI A. Pandora: Single unit fully coherent S and X band software defined radar[C]. Proceedings of the 16th International Radar Symposium, Dresden, Germany, 2015: 446–450. doi: 10.1109/IRS.2015.7226243.
|
[14] |
GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
|
[15] |
MENG Ziyi, LI Jianqiang, YIN Chunjing, et al. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer[J]. Optics Express, 2017, 25(18): 22055–22065. doi: 10.1364/OE.25.022055
|
[16] |
GHELFI P, LAGHEZZA F, SCOTTI F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2): 500–507. doi: 10.1109/JLT.2015.2482390
|
[17] |
LI Ruoming, DING Manlai, WEN Zhilei, et al. A photonic receiver based on stretch processing for synthetic aperture radar[C]. Proceedings of 2017 IEEE Photonics Conference, Orlando, USA, 2017: 677–678. doi: 10.1109/IPCon.2017.8116279.
|