基于去调频接收技术的微波光子双波段线性调频连续波雷达

曹继明 李若明 杨继尧 孙强 李王哲

曹继明, 李若明, 杨继尧, 等. 基于去调频接收技术的微波光子双波段线性调频连续波雷达[J]. 雷达学报, 2019, 8(2): 189–196. doi: 10.12000/JR18119
引用本文: 曹继明, 李若明, 杨继尧, 等. 基于去调频接收技术的微波光子双波段线性调频连续波雷达[J]. 雷达学报, 2019, 8(2): 189–196. doi: 10.12000/JR18119
CAO Jiming, LI Ruoming, YANG Jiyao, et al. Dual-band LFM-CW radar scheme based on photonic stretch processing[J]. Journal of Radars, 2019, 8(2): 189–196. doi: 10.12000/JR18119
Citation: CAO Jiming, LI Ruoming, YANG Jiyao, et al. Dual-band LFM-CW radar scheme based on photonic stretch processing[J]. Journal of Radars, 2019, 8(2): 189–196. doi: 10.12000/JR18119

基于去调频接收技术的微波光子双波段线性调频连续波雷达

doi: 10.12000/JR18119
基金项目: 国家自然科学基金(61871214, 61527820)
详细信息
    作者简介:

    曹继明(1994–),男,安徽人,中国科学院电子学研究所在读硕士研究生,主要研究方向为光子混频器及其在双带雷达方面的应用。E-mail: caojiming16@mails.ucas.ac.cn

    杨继尧(1992–),男,山西人,中国科学院电子学研究所在读博士研究生,主要研究方向为光子信道化技术及其在雷达信号处理中的应用。E-mail: yangjiyao16@mails.ucas.ac.cn

    孙强:孙   强(1994–),男,河北人,中国科学院电子学研究所在读博士研究生,主要研究方向为基于微波光子学的信号产生技术。E-mail: sunqiang17@mails.ucas.ac.cn

    李王哲(1983–),男,安徽人,加拿大渥太华大学博士,中国科学院电子学研究所研究员,博士生导师,研究方向为基于光子技术的合成孔径雷达、微波光子模块芯片集成等。E-mail: wzli@mail.ie.ac.cn

    通讯作者:

    李若明  rmli@ieee.org

    李王哲  wzli@mail.ie.ac.cn

  • 中图分类号: TN958

Dual-band LFM-CW Radar Scheme Based on Photonic Stretch Processing

Funds: The National Natural Science Foundation of China (61701476, 61690191)
More Information
  • 摘要: 该文提出一种基于光子辅助去调频接收技术的双波段线性调频连续波雷达方案,该双波段雷达接收机基于平行架构光子混频器,能够利用同一套硬件设备同时接收双波段雷达的回波信号。接收机中使用一个双偏振正交相移键控(DP-QPSK)调制器,工作中将双波段雷达的两组参考信号和回波信号通过DP-QPSK调制器调制到正交偏振的光载波上,调制后的双带光回波和参考信号经过放大和滤波后,输入到偏振解复用相干接收机中进行光子辅助去调频处理。在发射机端,对于具有更高频率和带宽的发射信号,采用包含延时功能的光子倍频信号产生技术,产生参考信号与发射信号的同时,将发射信号延时,使得在接收机端对相同距离目标的双带回波信号去调频得到的中频信号可在频域分离。实验中通过逆合成孔径雷达成像实验评估了该双波段雷达系统的性能,该双波段雷达系统工作在C波段和Ku波段,发射信号带宽分别为1 GHz和2 GHz,接收机模拟-数字转换器的采样率为100 MSa/s。实验结果证明微波光子技术能为双波段线性调频连续波雷达提供有效的实现方案。

     

  • 图  1  基于光子辅助去调频结构的双波段连续波雷达原理图(ADC:模数转换器;PBC:偏振合束器;PR:偏振旋转器;PBS:偏振分束器)

    Figure  1.  The structure of photonic-assisted dual-band radar based on stretch processing (ADC: Analog to Digital Converters; PBC/PBS: Polarization Beam Combiner/Splitter; PR: Polarization Rotator)

    图  2  双波段发射线性调频信号的频谱

    Figure  2.  The spectrum of transmitted signals

    图  3  双波段雷达信号光谱

    Figure  3.  The optical spectra of the signals

    图  4  相干接收机输出信号频谱

    Figure  4.  The spectra of the signals at output of the coherent receiver

    图  5  双角反转台成像结果

    Figure  5.  Radar images of a pair of rotating TCRs

  • [1] 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7(5): 531–547. doi: 10.12000/JR18049

    ZHANG Qun, HU Jian, LUO Ying, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7(5): 531–547. doi: 10.12000/JR18049
    [2] 李彦兵, 杜兰, 刘宏伟, 等. 基于微多普勒特征的地面目标分类[J]. 电子与信息学报, 2010, 32(12): 2848–2853. doi: 10.3724/SP.J.1146.2010.00128

    LI Yanbing, DU Lan, LIU Hongwei, et al. Ground targets classification based on micro-doppler effect[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2848–2853. doi: 10.3724/SP.J.1146.2010.00128
    [3] MELVIN W L and SCHEER J A. Principles of Modern Radar: Advanced Techniques[M]. Edison, NJ, Scitech Publishing, 2012. doi: 10.1049/SBRA020E.
    [4] 曹思扬, 郑元芳. 雷达波形研究发展现况与趋势(英文)[J]. 雷达学报, 2014, 3(5): 603–621. doi: 10.3724/SP.J.1300.2014.14044

    CAO Siyang and ZHENG Yuanfang. Recent developments in radar waveforms[J]. Journal of Radars, 2014, 3(5): 603–621. doi: 10.3724/SP.J.1300.2014.14044
    [5] 李堃, 梁兴东, 陈龙永, 等. 基于LFMCW体制的分布式SAR高分辨率成像方法研究[J]. 电子与信息学报, 2017, 39(2): 437–443. doi: 10.11999/JEIT160274

    LI Kun, LIANG Xingdong, CHEN Longyong, et al. Signal model and high-resolution imaging approach for distributed SAR based on LFMCW signals[J]. Journal of Electronics &Information Technology, 2017, 39(2): 437–443. doi: 10.11999/JEIT160274
    [6] CAPUTI W J. Stretch: A time-transformation technique[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(2): 269–278. doi: 10.1109/TAES.1971.310366
    [7] ZHOU Zhengshu, CACCETTA P, SIMS N C, et al. Multiband SAR data for rangeland pasture monitoring[C]. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 170–173. doi: 10.1109/IGARSS.2016.7729035.
    [8] TRIZNA D B, BACHMANN C, SLETTEN M, et al. Projection pursuit classification of multiband polarimetric SAR land images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2380–2386. doi: 10.1109/36.964974
    [9] LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optical Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334
    [10] ZHANG Fangzheng, GUO Qingshui. WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274
    [11] ZHANG Fangzheng, GAO Bindong, and PAN Shilong. Photonics-based MIMO radar with high-resolution and fast detection capability[J]. Optics Express, 2018, 26(13): 17529–17540. doi: 10.1364/OE.26.017529
    [12] ZOU Weiwen, ZHANG Hao, LONG Xin, et al. All-optical central-frequency-programmable and bandwidth-tailorable radar[J]. Scientific Reports, 2016, 6: 19786. doi: 10.1038/srep19786
    [13] SCOTTI F, LAGHEZZA F, and BOGONI A. Pandora: Single unit fully coherent S and X band software defined radar[C]. Proceedings of the 16th International Radar Symposium, Dresden, Germany, 2015: 446–450. doi: 10.1109/IRS.2015.7226243.
    [14] GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341–345. doi: 10.1038/nature13078
    [15] MENG Ziyi, LI Jianqiang, YIN Chunjing, et al. Dual-band dechirping LFMCW radar receiver with high image rejection using microwave photonic I/Q mixer[J]. Optics Express, 2017, 25(18): 22055–22065. doi: 10.1364/OE.25.022055
    [16] GHELFI P, LAGHEZZA F, SCOTTI F, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34(2): 500–507. doi: 10.1109/JLT.2015.2482390
    [17] LI Ruoming, DING Manlai, WEN Zhilei, et al. A photonic receiver based on stretch processing for synthetic aperture radar[C]. Proceedings of 2017 IEEE Photonics Conference, Orlando, USA, 2017: 677–678. doi: 10.1109/IPCon.2017.8116279.
  • 加载中
图(5)
计量
  • 文章访问数:  3421
  • HTML全文浏览量:  1181
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-01-15
  • 网络出版日期:  2019-04-01

目录

    /

    返回文章
    返回