A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming
-
摘要: 针对距离延时和方位多普勒频率调制两类合成孔径雷达(SAR)欺骗干扰问题,该文提出一种基于多输入多输出合成孔径雷达(MIMO-SAR)的2维混合基线抗欺骗干扰方法。该方法采用基于MIMO-SAR的相位编码方案,使得多通道信号正交,利用多维相位信息识别欺骗干扰,通过相位补偿抑制干扰目标,从而提升雷达抗欺骗干扰能力。该文采用雷达抗干扰改善因子进行定量效果评估,在平台空间受限的条件下,该文方法比传统单发多收系统的雷达抗干扰改善因子提升3倍。仿真实验结果证明了该方法的有效性与正确性。
-
关键词:
- 抗欺骗干扰 /
- 多输入多输出合成孔径雷达 /
- 相位补偿 /
- 雷达抗干扰改善因子
Abstract: A novel approach using two-dimensional mixed baseline based on Multi-Input Multi-Output Synthetic Aperture Radar (MIMO-SAR) has been proposed for range delay and azimuth Doppler frequency modulation used in deceptive jamming. Based on MIMO-SAR phase coding method, which makes the multi-channel signal orthogonal, we propose the detection of deceptive jamming phenomenon by employing multi-dimensional phase information, and suppress the jamming targets via phase compensation to improve the ability of countering deceptive jamming. Moreover, we utilize radar anti-jamming improvement factor as a quantitative evaluating index. In the limited platform space, the radar anti-jamming improvement factor of the proposed method is three times greater than that of conventional single-input multi-output systems. Experimental results demonstrate the validity of our method. -
1. 引言
目标的振动、转动等微动产生的微多普勒效应包含了目标的结构和运动信息,常用于目标的分类和识别[1–3]。目前,基于外辐射源雷达微多普勒效应目标分类和识别的研究还处于起步状态。外辐射源雷达是一种利用非合作照射源进行目标探测和分类识别的新体制雷达系统,其自身不辐射电磁能量,具有节约频谱资源,隐蔽性好,设备规模小,易于部署和组网等特点[4–6]。在微多普勒效应目标分类和识别方面,外辐射源雷达表现出得天独厚的优势:(1)收发分置可实现空间分集,有效避免探测盲区。(2)第三方辐射源多为连续波,长时间相干积累可记录多个连续的回波闪烁,同时有利于提高对低雷达散射截面积(Radar Cross-Section, RCS)微动目标的探测与分类识别能力。(3)对微多普勒特征的提取不要求高距离分辨率,参数估计不受第三方辐射源带宽的限制[7,8]。
针对微多普勒效应参数估计问题。文献[9,10]中依据微动目标正弦特征曲线,利用 Hough变换,在参数域中进行多维搜索提取出微动曲线进行参数估计。文献[11,12]通过正交匹配追踪(Orthogonal Matching Pursuit, OMP)算法进行稀疏逼近实现了微动目标参量的估计。上述方法均具有较好的鲁棒性,但由于估计参量维数较高导致计算量巨大。文献[13]利用微动目标在时频域的周期性,采用循环相关系数方法,实现了目标微动周期的估计,但信号周期较长时计算量急剧增加。文献[14]计算了信号的高阶矩函数,通过检测在不同时延下,高阶虚函数部分傅里叶变换累计结果的峰值位置,快速获得目标的旋转速率,相比于图像处理方法和OMP分解方法,计算复杂度较小,但抗噪性能差。而外辐射源雷达所利用的第三方辐射源多为连续波信号,其发射波形不可控,信号能量主要覆盖地面,杂波环境复杂且对空中目标增益低,利用长时间相干积累来提高处理增益会带来数据量巨大的挑战。上述因素决定了外辐射源雷达参数估计方法需要有良好的抗噪性能且计算量要小。
直升机旋翼旋转时对雷达信号产生周期性调制,当叶片发生镜面反射时,旋翼回波出现峰值,即回波闪烁。闪烁信号在时频图像中表现为一定宽度的频率带,且闪烁时间、闪烁间隔与直升机旋翼微动参数密切相关。针对外辐射源雷达参数估计问题,本文结合上述时频域中闪烁信号的特点,通过时频分析和正交匹配追踪算法实现了直升机旋翼微动参数的估计。本文首先给出了外辐射源雷达直升机旋翼微动信号模型,其次介绍了如何在时频图中提取出闪烁信号参数及正交匹配追踪算法对直升机旋翼微动参数的估计,最后仿真和实测证明了本文方法的有效性。
2. 外辐射源雷达直升机旋翼回波模型的建立
直升机旋转叶片与外辐射源雷达的位置关系如图1所示。以直升机旋转叶片的中心点为原点
o ,旋转叶片平面为xy 面,x 轴平行于发射站与接收站所在直线,建立空间坐标系(x,y,z) 。直升机相对于发射站和接收站距离为rT, rR ,方位角为γ, α ,仰角为βT, βR (cosβT≈cosβR=cosβ) 。叶片上某一散射点p 到原点o 距离为lP ,方位角为φt 。假设直升机平动得到补偿。在
t 时刻,从发射站经散射点p 到接收站的距离为:rP(t)=||RT −RP(t)||+||RR−RP(t)|| (1) 其中
RT, RR, RP(t) 分别为发射站、接收站、散射点p 在坐标系xyz 中的位置矢量。参考文献[1]中单基地直升机建模,将叶片看作线模型,外辐射源雷达直升机旋翼回波可表示为:
s(t)=Lexp{−j2πλ(rR+rT)}N∑k=1sinc{−ϕk(t)}⋅exp{jϕk(t)} (2) 其中,
ϕk(t)=−4πλL2cosβcos(α−γ2)cos(φk(t)) (3) φk(t)=2πfrt+φ0+(k−1)2π/N−α+γ2 (4) fr 为叶片转速,L 为叶片长度,N 为叶片数量,整数k (0<k≤N) 表示第k 个叶片,φ0 为叶片初相,λ 为照射源信号波长。由式(3)得第
k 个叶片引起的瞬时多普勒频移为:fk(t)=2πfrLλcosβcos(α−γ2)sin(φk(t)) (5) 由式(2)可知时域信号幅值受
sinc 函数调制,结合式(3)知当φk(t) 满足式(6)时,ϕk(t)=0 ,时域信号幅值最大,此刻即时域闪烁。φk(t)=±π2+2πn (6) 由式(2)知连续两个闪烁之间的时间间隔为:
Δt={12N⋅fr,N为奇数1N⋅fr, N为偶数 (7) 3. 直升机旋翼参数估计
3.1 时频分析提取闪烁信号参数
直升机旋翼回波的微多普勒呈非线性变化,通过对目标回波信号进行时频分析能够揭示信号频率的时变特性。短时傅里叶变化(Short-Time Fourier Transform, STFT)计算简单,且不产生交叉项。对直升机旋翼回波信号
s(t) 进行STFT到时频域TF(t,f)=∫s(τ)w(τ−t)e−j2πfτdτ (8) 其中,
w(t) 为窗函数。旋翼微多普勒效应特征曲线为正弦曲线,对应时域闪烁出现的时刻出现垂直于时间横轴的频率带,即时频域“闪烁”[15]。图2为直升机旋翼回波的时频图。当直升机旋翼的叶片数为奇数时(图2(a)),时频域中正负多普勒“闪烁”交替出现;若旋翼叶片数为偶数(图2(b)),则是同时出现。
设时频域中正频率“闪烁”发生的时间为
t0 ,由式(5)和式(6)知t0 满足:φk(t0)=π2+2πn(n为整数) (9) 由式(4)和式(9)得第
k 个叶片初相与叶片数量的关系:φ0={−πt0Δt1N−2π(k−1)1N+φ1, N为奇数−2πt0Δt1N−2π(k−1)1N+φ1,N为偶数 (10) 其中
φ1=α+γ2+2πn+π2(0≤φ0<2π) (11) 由于时频图像中闪烁信号频率带垂直于时间横轴,对正频率轴数据幅值进行累加计算,并判断累加后数据局部峰值点,可得到时频域中正频率“闪烁”发生的时间。同样,对负频率轴数据幅值进行累加计算得到时频域中负频率“闪烁”发生的时间。相应的也可得到闪烁间隔。
由式(7)知,闪烁间隔与旋翼转速、叶片数量密切相关。由式(10)知,闪烁发生的时间与叶片初相、叶片数量、整数
k 密切相关。因此,可根据得到的闪烁间隔,用叶片数量表示出旋翼转速。根据得到的闪烁时间,用叶片数量、整数k 表示出第k 个叶片初相。3.2 OMP估计直升机旋翼参数
由式(2)知时域回波信号可分解为:
s(t)=M∑m=1cmgm(t;Λ)=Dα (12) 其中,
gm 为第m 个原子,D 为以原子为列张成的字典矩阵D=[g1 g2 g3···gM] ∈CNt×M, M 为原子个数,Nt 为时间t 离散后的取值个数,Λ 为要估计的参量,cm 为原子系数,α∈CM 为系数矢量,是稀疏的。可转化最优l0 范数问题进行稀疏向量求解。OMP常用于求解此类问题,通过构建字典矩阵,不断选定与信号最匹配的原子进行稀疏逼近[16]。OMP将字典矩阵中原子正交化保证了迭代的最优性。由式(2)知直升机旋翼回波信号由参数
(fr,L,φ0,N,k) 确定。利用叶片数量N 、整数k (0<k≤N) 与旋翼转速和叶片初相的关系式(7)和式(10),时域回波可转化为参数(L,N,k) 来表示。设时间采样点数Nt ,目标回波为Nt×1 的矩阵。确定待估参数的取值范围并离散化,叶片长度取值:L∈(L1,···,Lr,···,LNL) ,叶片数量N 的可能取值为:N∈(N1,···,Np,···,NNN) ,整数k 的取值为k∈(1,···,kq,···,kNq) (kNq≤NNN) 。由OMP算法原理可知,字典中的原子可按照待分解信号的内在特性来构造[16]。根据微动目标的时域回波表达式(2),第
m 个原子可表示为:a(m)=sinc(ϕ(Lr,Np,kq))⋅exp{−jϕ(Lr,Np,kq)} (13) 其中
m=rpq (14) 并对原子集里的每个原子进行能量归一化:
a(m)←a(m)/‖a(m)‖F (15) 其中,
‖⋅‖F 表示矩阵的F范数。将5参量
(fr,L,φ0,N,k) 的估计转换为3参量(L,N,k) 估计,NL, NN, Nk 分别为L, N, k 的取值个数,由于常见直升机主旋翼叶片数量为:3片、5片、7片(奇数),2片、4片、8片(偶数),NN, Nk 较小,降低字典维数为:NL×Nk×NN ,可达到降低计算量的目的。3.3 直升机旋翼参数估计流程
直升机旋翼参数估计具体步骤如下:
步骤1 对直升机旋翼信号进行短时傅里叶变换,得到时频图像
TF(t,f) 。步骤2 对时频图中正频率轴数据幅值进行累加计算,并判断累加后数据局部峰值点,对应时频域正频率“闪烁”发生的时间。同样,对负频率轴数据幅值进行累加计算得到时频域中负频率“闪烁”发生的时间。
步骤3 根据步骤2中正负频率“闪烁”发生的时间,判别时频域中正负多普勒“闪烁”是否交替出现。若是,则旋翼叶片数为奇数,否则,旋翼叶片数为偶数。
步骤4 读取某一正频率闪烁发生的时间
t0 及闪烁间隔Δt 。依据式(7)用叶片数量N 表示出旋翼转速,依据式(10)和式(11)用叶片数量N 及整数k 表示出第k 个叶片初相。步骤5 确定
(L,N,k) 的取值范围并离散化:L∈(L1,···,Lr,···,LNL) ,N∈(N1,···,Np,···,NNN) ,k∈(1,···,kq,···,kNq) (kNq≤NNN) 。利用步骤4中表示出的旋翼转速及初相,依据式(13)和式(15)构建字典矩阵。步骤6 利用OMP算法寻找叶片数量,叶片长度的最优值,代入式(7)计算出旋翼转速,代入式(10)和式(11)计算出叶片初相。
4. 仿真验证
4.1 仿真结果分析
结合上述模型对直升机旋翼回波信号进行仿真,仿真参数设置如表1所示。
表 1 外辐射源雷达直升机旋翼回波模型仿真参数Table 1. Simulation parameters of helicopter rotor echo model for passive radar信号载频 叶片数 叶片长度 旋转速率 发射站方位角 接收站方位角 发射站仰角 接收站仰角 SNR 658 MHz 3 5 m 200 rpm 33° 76° 23° 23° –5 dB 图3(a)显示了信号的联合时频域特征,可看出闪烁信号及噪声严重影响直升机旋翼微多普勒特征曲线的检测,使微多普勒特征曲线提取困难。
分别对时频图像中正负频率轴数据幅值进行累加计算,得到时频域中正负多普勒“闪烁”时间,如图3(b)所示,图中正负多普勒“闪烁”等间隔交替出现,则旋翼叶片数为奇数。读取闪烁信号时间间隔为0.05 s,根据式(7)表示出旋翼转速为:
fr=10/N (16) 读取某一正频率闪烁信号对应时刻为0.066 s(此处选择了图3(b)中的第1个正频率闪烁信号),根据式(10)和式(11)表示出第
k 个叶片初相为:φ0=−4.14/N−6.28×(k−1)/N+2.52 (17) 图3(c)为利用OMP方法对
(L,N,k) 的估计结果,得到叶片数为3片,图中给出了其对应的切面图,3叶片长度分别4.99 m, 5.00 m, 4.98 m,均值4.99 m,与理论基本一致,代入式(17)得3叶片初相分别为1.14 rad, 3.24 rad, 5.34 rad,代入式(16)得旋翼转速为200 rpm,与理论值一致,本文方法准确实现了直升机旋翼参数估计。图4为利用常规Hough变换,通过微多普勒曲线
f=fmax 检测对参数({f\!_r},{\varphi _0},L) 的估计结果。其中{f_{\max }} 为最大频移。{f_{\max }} = \frac{{4{{π}} {f\!_r}L}}{\lambda }\cos\beta \cos\left( \frac{{\alpha - \gamma }}{2}\right) (18) 图4中给出了参数空间中局部峰值点中心位置。可得到直升机旋翼转速为200 rpm。3叶片最大频移分别为385.6 Hz, 393.9 Hz, 389.8 Hz,平均值为390.0 Hz,由式(18)计算得叶片长度为4.96 m,与理论值基本一致。3叶片初相分别为0.91 rad, 3.16 rad, 5.24 rad,利用式(4)对初相进行修正,得到3叶片初相位为1.86 rad, 4.11 rad, 6.19 rad,存在较大的误差,是由于STFT受不确定原理的限制,时频图像中时频分辨率受限使参数空间中的局部峰值点扩展范围较大,只能大致估计局部峰值点的位置,估计结果精度较低。
4.2 计算复杂度分析
设待处理的时频图像大小为
{N_t} \times {N_f} 像素,{N_f} \approx {N_t} ,利用常规的Hough变换对微多普勒曲线f = {f_{\max }}\sin(2{{π}} {f\!_r}t{\rm{ + }}{\varphi _0}) 进行检测,参数({f\!_r},{\varphi _0},L) 分别量化为{N_{f_{r}}} ,{N_{{\varphi _0}}} ,{N_L} 份。乘法次数可近似表示为:2{N_{f_{r}}}{N_{{\varphi _0}}}{N_L}{N_t}^{\!2} 。直接使用OMP进行参数
({f\!_r},{\varphi _0},L) 估计时,设迭代次数为K,乘法次数近似表示为:K{N_{f\!_{r}}}{N_{{\varphi _0}}} {N_L}{N_t}^{\!2} 。本文方法计算量集中在OMP阶段,根据提取的时频域中的闪烁时间,依据式(7)和式(10),最终转化为对参数
(L,N,k) 的估计,常见直升机的叶片数只有若干个取值,且由3.1节方法可判断出叶片数量的奇偶性,{N_N}{N_k} 远小于{N_{f_{r}}}{N_{{\varphi _0}}} 。本文方法乘法次数近似表示为:K{N_N}{N_k}{N_L}{N_t}^{\!2} 。在对直升机旋翼微动参数估计时,一般
{N_N}{N_k} 取值量级为101~102,迭代次数K的取值量级为{10^0} {\text ~} {10^1} ,当初相{\varphi _0} 的估计精度为7°时,2{N_{{\varphi _0}}} 取值量级为102,当转速{f_r} 的估计精度为10 rpm时,{N_{f_{r}}} 的取值量级为{10^1} ,在乘法次数上,常规 Hough变换参数估计方法为本文方法{10^0}{\text ~} {10^2} 倍,当进一步提高{f_r}, {\varphi _0} 的估计精度时,算法之间的计算量差距将进一步变大。本文在相同的配置环境下,利用Matlab仿真平台,常规Hough变换方法运行时长13006 s,而本文方法运行总时长只有145 s。5. 实验结果
5.1 实验场景
武汉大学电波传播实验室对EC_120B直升机进行了微多普勒效应探究外场实验,EC_120B直升机主旋翼3叶片,叶片长度5 m,额定转速406 rpm,实验中以武汉龟山电视塔数字电视信号为照射源,信号中心频率为658 MHz,带宽8 MHz,接收站位于武汉大学电波传播实验室楼顶,距离发射站7.56 km,实验场景如图5所示。本组实测数据相干积累时间0.8 s,可近似认为目标在这段时间位置不变,直升机旋翼转速为常量。
5.2 实验结果分析
图6(a)为去除目标主体影响后,对直升机旋翼回波信号进行短时傅里叶变换后的时频图像。可以观察到闪烁信号,但微多普勒特征曲线已观察不到。分别对时频图像中正负频率轴数据幅值进行累加计算,得到时频域中正负多普勒“闪烁”时间,如图6(b)所示,图中正负多普勒“闪烁”等间隔交替出现,则旋翼叶片数为奇数。
读取闪烁信号时间间隔为26.2 ms,根据式(7)用
N 表示出旋翼转速。读取某一正频率闪烁时间对应时间为0.25 s,利用式(10)和式(11)表示出第k 个叶片初相,图6(c)为利用OMP方法对(L,N,k) 的估计结果,得到叶片数量为3片,3叶片长度分别为4.93 m, 5.00 m, 4.66 m,均值4.86 m,存在较小的误差,与仰角,方位角估计不精确有关,由式(7)知旋翼转速均为382 rpm,符合实际情况。6. 结束语
本文根据外辐射源雷达直升机旋翼微动信号模型,充分利用时频域中闪烁信号特征和微动信号内在特性进行了参数估计。通过时频分析和正交匹配追踪算法,估计出了旋翼转速、叶片长度、叶片数量和初相。同时开展了外场实验。仿真数据和实测数据处理都表明本文方法对外辐射源雷达直升机旋翼参数估计的可行性。
-
表 1 仿真参数
Table 1. Simulation parameters
参数 数值 景中心斜距(km) 1.414 雷达有效速度(m/s) 150 发射脉冲时宽(μs) 2.5 距离调频率(Hz/s) 20 × 1012 雷达工作频率(GHz) 5.3 多普勒带宽(Hz) 80 距离采样率(MHz) 60 方位采样率(Hz) 400 回波信噪比(dB) 10 距离基线长度(m) 4 方位基线长度(m) 2 表 2 9点目标交轨干涉相位
Table 2. Cross-track interference phase of nine-point target
相位(rad) 第1列 第2列 第3列 第1行 0.1348 0.1370 0.1423 第2行 0.1360 0.1390 0.1407 第3行 0.1379 0.1370 0.1425 表 3 9点目标顺轨干涉相位
Table 3. Along-track interference phase of nine-point target
相位(rad) 第1列 第2列 第3列 第1行 3.085 3.085 3.085 第2行 0 0 0 第3行 –3.085 –3.086 –3.086 -
[1] 朱守保, 罗强, 童创明. SAR图像欺骗干扰方法研究[J]. 电光与控制, 2012, 19(4): 39–42. doi: 10.3969/j.issn.1671-637X.2012.04.010ZHU Shoubao, LUO Qiang, and TONG Chuangming. Methods of deceptive jamming to SAR image[J]. Electronics Optics &Control, 2012, 19(4): 39–42. doi: 10.3969/j.issn.1671-637X.2012.04.010 [2] ZHANG Jindong, ZHU Daiyin, and ZHANG Gong. New antivelocity deception jamming technique using pulses with adaptive initial phases[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1290–1300. doi: 10.1109/TAES.2013.6494414 [3] 孙光才, 周峰, 邢孟道, 等. 虚假场景SAR欺骗式干扰技术及实时性分析[J]. 西安电子科技大学学报(自然科学版), 2009, 36(5): 813–818, 866.SUN Guangcai, ZHOU Feng, XING Mengdao, et al. Deception-jamming technology against the SAR based on the deceptive scene and real-time analyses[J]. Journal of Xidian University, 2009, 36(5): 813–818, 866. [4] 马晓岩, 秦江敏, 贺照辉, 等. 抑制SAR压制性干扰的三通道对消方法[J]. 电子学报, 2007, 35(6): 1015–1020. doi: 10.3321/j.issn:0372-2112.2007.06.002MA Xiaoyan, QIN Jiangmin, HE Zhaohui, et al. Three-channel cancellation of SAR blanketing jamming suppression[J]. Acta Electronica Sinica, 2007, 35(6): 1015–1020. doi: 10.3321/j.issn:0372-2112.2007.06.002 [5] ZHOU F, SUN G, BAI X, et al. A novel method for adaptive SAR barrage jamming suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 292–296. doi: 10.1109/LGRS.2011.2166753 [6] 王晓东, 马泉成. 基于FMCW合成孔径雷达抗欺骗干扰方法研究[J]. 计算机仿真, 2013, 30(7): 5–10. doi: 10.3969/j.issn.1006-9348.2013.07.002WANG Xiaodong and MA Quancheng. Anti-deception jamming method for frequency modulated continuous wave synthetic aperture radar[J]. Computer Simulation, 2013, 30(7): 5–10. doi: 10.3969/j.issn.1006-9348.2013.07.002 [7] 彭发祥, 李宏伟, 蔡斌, 等. 星载多发多收SAR成像和抗欺骗干扰研究[J]. 现代防御技术, 2012, 40(2): 143–149, 154. doi: 10.3969/j.issn.1009-086x.2012.02.028PENG Faxiang, LI Hongwei, CAI Bin, et al. Research on spaceborne MIMO-SAR imaging and anti-deceptive jamming[J]. Modern Defence Technology, 2012, 40(2): 143–149, 154. doi: 10.3969/j.issn.1009-086x.2012.02.028 [8] 齐维孔, 禹卫东. 距离向DBF-SAR系统抗欺骗干扰研究[J]. 电子与信息学报, 2010, 32(12): 2830–2835. doi: 10.3724/SP.J.1146.2010.00074QI Weikong and YU Weidong. Research on countering deceptive jamming with range DBF-SAR system[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2830–2835. doi: 10.3724/SP.J.1146.2010.00074 [9] SOUMEKH M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. doi: 10.1109/TAES.2006.1603414 [10] Emmanuel Arturo Solis Nepote. Chaotic and chaotic based frequency modulated signals for radar imaging[D]. [Master dissertation], University of Manitoba, 2003. [11] LI Chen and ZHU Daiyin. The detection of deception jamming against SAR based on dual-aperture antenna cross-track interferometry[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1009/ICR.2006.343274. [12] QIN Jiangmin, YANG Jun, HE Zhaohui, et al. Analysis of target loss due to suppressing SAR jamming using dual-channel cancellation[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343324. [13] SUN Bingzhang and LI Jingwen. A new interference elimination method for multi-satellite SAR system[C]. IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 2008, 4: IV-1316–IV-1319. doi: 10.1109/IGARSS.2008.4779973 [14] ZHAO Bo, HUANG Lei, LI Jian, et al. Target reconstruction from deceptively jammed single-channel SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1): 152–167. doi: 10.1109/TGRS.2017.2744178 [15] 王杰, 丁赤飚, 梁兴东, 等. 机载同时同频MIMO-SAR系统研究概述[J]. 雷达学报, 2018, 7(2): 220–234. doi: 10.12000/JR17046WANG Jie, DING Chibiao, LIANG Xingdong, et al. Research outline of airborne MIMO-SAR system with same time-frequency coverage[J]. Journal of Radars, 2018, 7(2): 220–234. doi: 10.12000/JR17046 [16] 黄洪旭, 黄知涛, 周一宇. 对合成孔径雷达的移频干扰研究[J]. 宇航学报, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027HUANG Hongxu, HUANG Zhitao, and ZHOU Yiyu. A study on the shift-frequency jamming to SAR[J]. Journal of Astronautics, 2006, 27(3): 463–468. doi: 10.3321/j.issn:1000-1328.2006.03.027 [17] HE Xiaodong, WANG Zhen, and TANG Bin. Two-dimensional frequency modulation jamming to SAR based on ship-borne jammer[J]. International Journal of Electronics Letters, 2016, 4(2): 141–157. doi: 10.1080/00207217.2014.966782 [18] 许宝民, 郑光勇, 李宏. 合成孔径雷达有源欺骗干扰仿真分析[J]. 飞行器测控学报, 2010, 29(3): 84–87.XU Baomin, ZHENG Guangyong, and LI Hong. Simulation research on active deceptive jamming to SAR[J]. Journal of Spacecraft TT &C Technology, 2010, 29(3): 84–87. [19] 刘永才, 王伟, 潘小义, 等. 基于延迟-移频的SAR有源欺骗干扰有效区域研究[J]. 雷达学报, 2013, 2(1): 46–53. doi: 10.3724/SP.J.1300.2012.13001LIU Yongcai, WANG Wei, PAN Xiaoyi, et al. Effective region of active decoy jamming to SAR based on time-delay doppler-shift method[J]. Journal of Radars, 2013, 2(1): 46–53. doi: 10.3724/SP.J.1300.2012.13001 期刊类型引用(3)
1. 张佳辉,苗洪利,杨忠昊,刘昆池. 基于SAR子孔径分解的海表面二维流场反演. 海洋学报. 2023(08): 24-30 . 百度学术
2. 李志远,郭嘉逸,张月婷,黄丽佳,李洁,吴一戎. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法. 雷达学报. 2022(01): 83-94 . 本站查看
3. 雷禹,冷祥光,孙忠镇,计科峰. 宽幅SAR海上大型运动舰船目标数据集构建及识别性能分析. 雷达学报. 2022(03): 347-362 . 本站查看
其他类型引用(2)
-