地基差分干涉雷达发展现状及应用实例

曾涛 邓云开 胡程 田卫明

曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154–170. doi: 10.12000/JR18115
引用本文: 曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154–170. doi: 10.12000/JR18115
ZENG Tao, DENG Yunkai, HU Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154–170. doi: 10.12000/JR18115
Citation: ZENG Tao, DENG Yunkai, HU Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154–170. doi: 10.12000/JR18115

地基差分干涉雷达发展现状及应用实例

DOI: 10.12000/JR18115
基金项目: 国家自然科学基金(61427802, 61601031),国家杰出青年科学基金(61625103),长江学者奖励计划(T2012122)
详细信息
    作者简介:

    邓云开(1992–),男,河南人,北京理工大学博士研究生,主要研究方向为地基SAR高精度1维形变与3维形变实时测量算法。E-mail: yunkai_bit@foxmail.com

    通讯作者:

    邓云开  yunkai_bit@foxmail.com

  • 中图分类号: TN95

Development State and Application Examples of Ground-based Differential Interferometric Radar

Funds: The National Natural Science Foundation of China (61427802, 61601031), The National Science Fund for Distinguished Yong Scholars (61625103), The Foundation of Chang Jiang Scholars Programme (T2012122)
More Information
  • 摘要: 地基差分干涉雷达在形变监测领域已经得到了广泛的应用。该文首先概述了地基差分干涉雷达的主要类型,分为地基实孔径雷达和地基合成孔径雷达两类,并选择代表性系统介绍了工作原理及重要参数。然后以地基合成孔径雷达为例,介绍了现阶段差分干涉处理中的重要技术,包括差分干涉、PS点选择、大气相位补偿等。最后以3个应用实例,展现了地基差分干涉雷达,在露天开采边坡监测、山体滑坡监测和桥梁振动测量方面的应用。

     

  • 图  1  典型地基RAR

    Figure  1.  Typical GB-RAR systems

    图  2  典型直线扫描地基SAR

    Figure  2.  Typical linear-scanning GB-SAR systems

    图  3  典型弧线扫描地基SAR

    Figure  3.  Typical arc-scanning GB-SAR systems

    图  4  典型MIMO地基SAR

    Figure  4.  Typical MIMO GB-SAR systems

    图  5  部分地基RAR

    Figure  5.  Some GB-RAR systems

    图  6  地基SAR差分干涉处理流程

    Figure  6.  Differential interferometric scheme of GB-SAR

    图  7  差分干涉原理示意图

    Figure  7.  Schematic diagram of differential interferometry

    图  8  典型PS点选择结果

    Figure  8.  Typical PS selection results

    图  9  相位解缠结果

    Figure  9.  Phase unwrapping results

    图  10  干涉相位图

    Figure  10.  Phase interferogram

    图  11  实验信息

    Figure  11.  Experimental information

    图  12  MIMO雷达图像与干涉相位图

    Figure  12.  MIMO radar image and phase interferogram

    图  13  形变测量结果

    Figure  13.  Deformation measurement results

    图  14  形变分析结果

    Figure  14.  Deformation analysis results

    图  15  纳雍滑坡灾后现场监测照片

    Figure  15.  On-site monitoring photo after the Nayong landslide

    图  16  累积形变测量结果

    Figure  16.  Cumulative deformation measurements

    图  17  形变分析结果

    Figure  17.  Deformation analysis results

    图  18  实验信息

    Figure  18.  Experimental information

    图  19  振动分析结果

    Figure  19.  Vibration analysis results

    图  20  实验信息

    Figure  20.  Experimental information

    图  21  实验分析结果

    Figure  21.  Experimental analysis results

    表  1  直线扫描地基SAR参数表

    Table  1.   Parameters of linear-scanning GB-SAR

    研究机构/公司系统波段测量周期空间分辨率(1 km处)最远探测距离(km)
    IDS公司 (意大利)IBIS-FMKu约3 min0.5 m×4.4 m4.5
    JRC组织 (欧盟)LiSAKu约12 min0.5 m×3.0 m3
    MetaSensing公司(荷兰)FastGBSAR-SKu10 s0.5 m×4.8 m4
    UPC大学 (西班牙)RiskSARX约20 min1.5 m×7.7 m10
    安科院 (中国)S-SARKu<10 min0.5 m×3.0 m5
    理工雷科公司 (中国)边坡雷达Ku3~10 min0.3 m×4.0 m5
    方向图公司 (中国)LSAKu4~10 min0.2 m×5.4 m5
    下载: 导出CSV

    表  2  MIMO雷达参数表

    Table  2.   Parameters of the MIMO radar system

    参数数值参数数值
    载频16.2 GHz发射信号时宽0.1~0.5 ms
    发射天线16发射信号带宽400 MHz/1 GHz
    接收天线16发射信号采样率12.5 MHz/25.0 MHz
    合成孔径长度1.138 m合成孔径采样点256
    下载: 导出CSV

    表  3  振动测量结果

    Table  3.   Vibrating measurement results

    组号振幅设定值(μm)频率设定值(Hz)频率测量值(Hz)测量误差(Hz)偏差比(%)
    12601010.130.131.3
    25001010.350.353.5
    37501010.220.222.2
    45101515.080.080.6
    55002020.060.060.3
    67501010.410.414.1
    77501010.070.070.7
    下载: 导出CSV
  • [1] 刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质评论, 2014, 60(4): 858–868. doi: 10.3969/j.issn.0371-5736.2014.04.015

    LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4): 858–868. doi: 10.3969/j.issn.0371-5736.2014.04.015
    [2] 杨光华, 钟志辉, 张玉成, 等. 滑坡灾害的机制与力学特性分析[J]. 岩石力学与工程学报, 2016, 35(S2): 4009–4017. doi: 10.13722/j.cnki.jrme.2016.0804

    YANG Guanghua, ZHONG Zhihui, ZHANG Yucheng, et al. Analysis of mechanism and mechanical characteristics of landslide disaster[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4009–4017. doi: 10.13722/j.cnki.jrme.2016.0804
    [3] 张德辉, 卢晓辉, 李天龙. GNSS实时形变监测系统在岩质高边坡中的应用[J]. 勘察科学技术, 2008(1): 36–38. doi: 10.3969/j.issn.1001-3946.2018.01.009

    ZHANG Dehui, LU Xiaohui, and LI Tianlong. Application of GNSS surface displacement monitoring system in high rock slope[J]. Site Investigation Science and Technology, 2008(1): 36–38. doi: 10.3969/j.issn.1001-3946.2018.01.009
    [4] 于欢欢, 徐亚富, 谢洪波. 基于三维激光扫描技术的边坡变形监测应用研究[J]. 中州煤炭, 2015(12): 111–113. doi: 10.3969/j.issn.1003-0506.2015.12.035

    YU Huanhuan, XU Yafu, and XIE Hongbo. Application of slope deformation monitoring based on three-dimensional laser scanning technology[J]. Zhongzhou Coal, 2015(12): 111–113. doi: 10.3969/j.issn.1003-0506.2015.12.035
    [5] 陈怡曲. 基于InSAR的形变监测技术研究[D]. [硕士论文], 电子科技大学, 2013.

    CHEN Yiqu. Deformation measurement techniques based on InSAR[D]. [Master dissertation], University of Electronic Science and Technology of China, 2013.
    [6] 刘斌, 葛大庆, 李曼, 等. 地基合成孔径雷达干涉测量技术及其应用[J]. 国土资源遥感, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01

    LIU Bin, GE Daqing, LI Man, et al. Ground-based interferometric synthetic aperture radar and its applications[J]. Remote Sensing for Land &Resources, 2017, 29(1): 1–6. doi: 10.6046/gtzyyg.2017.01.01
    [7] 孙建勋, 郑会歌. 关于地基InSAR新技术及水利工程变形监测应用的研究[J]. 水利建设与管理, 2017, 37(11): 7–10. doi: 10.16616/j.cnki.11-4446/TV.2017.011.002

    SUN Jianxun and ZHENG Huige. Research on application of foundation InSAR new technology and water conservancy engineering deformation monitoring[J]. Water Resources Development &Management, 2017, 37(11): 7–10. doi: 10.16616/j.cnki.11-4446/TV.2017.011.002
    [8] REEVES B, NOON D A, STICKLEY G F, et al. Slope stability radar for monitoring mine walls[C]. Proceedings of SPIE 4491, Subsurface and Surface Sensing Technologies and Applications III, San Diego, CA, United States, 2001: 57–67. doi: 10.1117/12.450188.
    [9] 章亮, 任奋华, 王培涛, 等. 基于MSR300雷达监测的凹山采场降雨条件下的边坡变形及滑坡[J]. 工程科学学报, 2018, 40(4): 407–415. doi: 10.13374/j.issn2095-9389.2018.04.003

    ZHANG Liang, REN Fenhua, WANG Peitao, et al. Investigation of deformation and failure in washan slope considering rainfall conditions based on MSR300 radar monitoring[J]. Chinese Journal of Engineering, 2018, 40(4): 407–415. doi: 10.13374/j.issn2095-9389.2018.04.003
    [10] WERNER C, WIESMANN A, STROZZI T, et al. The GPRI multi-mode differential interferometric radar for ground-based observations[C]. Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 304–307.
    [11] ZENG Tao, MAO Cong, HU Cheng, et al. Ground-based SAR wide view angle full-field imaging algorithm based on keystone formatting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2160–2170. doi: 10.1109/JSTARS.2016.2558578
    [12] RÖDELSPERGER S, LÄUFER G, GERSTENECKER C, et al. Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L[J]. Journal of Applied Geodesy, 2010, 4(1): 41–54. doi: 10.1515/JAG.2010.005
    [13] LEVA D, NICO G, TARCHI D, et al. Temporal analysis of a landslide by means of a ground-based SAR Interferometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 745–752. doi: 10.1109/TGRS.2003.808902
    [14] RÖDELSPERGER S and META A. MetaSensing’s FastGBSAR: Ground based radar for deformation monitoring[C]. Proceedings of SPIE 9243, SAR Image Analysis, Modeling, and Techniques XIV, Amsterdam, Netherlands, 2014. doi: 10.1117/12.2067243.
    [15] AGUASCA A, BROQUETAS A, MALLORQUI J, et al. A solid state L to X-band flexible ground-based SAR system for continuous monitoring applications[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 2014. doi: 10.1109/IGARSS.2004.1368512.
    [16] 林德才, 马海涛, 宋宝宏. 边坡雷达在滑坡应急救援行动中的应用[J]. 中国安全生产科学技术, 2016, 12(S1): 284–289. doi: 10.11731/j.issn.1673-193x.2016.S1.050

    LIN Decai, MA Haitao, and SONG Baohong. Application of slope radar in emergency rescue of landslide[J]. Journal of Safety Science and Technology, 2016, 12(S1): 284–289. doi: 10.11731/j.issn.1673-193x.2016.S1.050
    [17] HU Cheng, ZHU Mao, ZENG Tao, et al. High-precision deformation monitoring algorithm for GBSAR system: Rail determination phase error compensation[J]. Science China Information Science, 2016, 59(8): 082307. doi: 10.1007/s11432-015-5446-z
    [18] 路满, 宋红军, 罗运华. 基于调频连续波信号的圆弧式合成孔径雷达成像方法[J]. 雷达学报, 2016, 5(4): 425–433. doi: 10.12000/JR16007

    LU Man, SONG Hongjun, and LUO Yunhua. Imaging algorithm for Arc synthetic aperture radar using frequency modulated continuous wave[J]. Journal of Radars, 2016, 5(4): 425–433. doi: 10.12000/JR16007
    [19] 林赟, 谭维贤, 洪文, 等. 圆迹SAR极坐标格式算法研究[J]. 电子与信息学报, 2010, 32(12): 2802–2807. doi: 10.3724/SP.J.1146.2010.00003

    LIN Yun, TAN Weixian, HONG Wen, et al. Polar format algorithm for circular synthetic aperture radar[J]. Journal of Electronics &Information Technology, 2010, 32(12): 2802–2807. doi: 10.3724/SP.J.1146.2010.00003
    [20] LEE H, LEE J H, KIM K E, et al. Development of a truck-mounted arc-scanning synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2773–2779. doi: 10.1109/TGRS.2013.2265700
    [21] VIVIANI F, MICHELINI A, MAYER L, et al. IBIS-ArcSAR: An innovative ground-based SAR system for slope monitoring[C]. Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018. doi: 10.1109/IGARSS.2018.8517702.
    [22] LUO Yunhua, SONG Hongjun, WANG R, et al. Arc FMCW SAR and applications in ground monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5989–5998. doi: 10.1109/TGRS.2014.2325905
    [23] TARCHI D, OLIVERI F, and SAMMARTINO P F. MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 425–435. doi: 10.1109/TGRS.2012.2199120
    [24] HU C, WANG J, TIAN W, et al. Design and imaging of ground-based multiple-input multiple-output synthetic aperture radar (MIMO SAR) with non-collinear arrays[J]. Sensors, 2017, 17: 598. doi: 10.3390/s17030598
    [25] BROUSSOLLE J, KYOVTOROV V, BASSO M, et al. MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91: 50–58. doi: 10.1016/j.isprsjprs.2014.02.003
    [26] 乞耀龙, 王彦平, 李湖生, 等. 一种用于地基雷达数据成像处理的数字波束形成算法[J]. 信号处理, 2015, 31(10): 1313–1317. doi: 10.3969/j.issn.1003-0530.2015.10.014

    QI Yaolong, WANG Yanping, LI Husheng, et al. Digital beam forming algorithm for ground-based radar imaging processing[J]. Journal of Signal Processing, 2015, 31(10): 1313–1317. doi: 10.3969/j.issn.1003-0530.2015.10.014
    [27] MONSERRAT O, CROSETTO M, and LUZI G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40–48. doi: 10.1016/j.isprsjprs.2014.04.001
    [28] CADUFF R, SCHLUNEGGER F, KOS A, et al. A review of terrestrial radar interferometry for measuring surface change in the geosciences[J]. Earth Surface Processes and Landforms, 2015, 40(2): 208–228. doi: 10.1002/esp.3656
    [29] 朱茂. 基于动态PS的地基合成孔径雷达高精度形变测量技术研究[D]. [博士论文], 北京理工大学, 2016.

    ZHU Mao. High Precision Deformation measurement using ground based synthetic aperture radar (GBSAR) based on dynamic persistent scatter (PS) technique[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2016.
    [30] FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661
    [31] RÖDELSPERGER S. Real-time processing of ground based synthetic aperture radar (GB-SAR) measurements[D]. [Ph.D. dissertation], Technische Universitat Darmstadt, 2011.
    [32] 周伟, 黄其欢, 张顺迎. 基于PS方法的地基SAR在大坝变形监测中的应用[J]. 勘察科学技术, 2016(1): 18–22. doi: 10.3969/j.issn.1001-3946.2016.01.005

    ZHOU Wei, HUANG Qihuan, and ZHANG Shunying. Application of ground-based SAR in dam deformation monitoring based on PS method[J]. Site Investigation Science and Technology, 2016(1): 18–22. doi: 10.3969/j.issn.1001-3946.2016.01.005
    [33] CROSETTO M, MONSERRAT O, CUEVAS-GONZÁLEZ M, et al. Persistent scatterer interferometry: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 78–89. doi: 10.1016/j.isprsjprs.2015.10.011
    [34] 韩洁, 赖涛, 赵拥军, 等. 小数据集PS-DInSAR的PS点探测方法[J]. 信号处理, 2015, 31(6): 679–685. doi: 10.3969/j.issn.1003-0530.2015.06.007

    HAN Jie, LAI Tao, ZHAO Yongjun, et al. Method on PS detection of small dataset PS-DInSAR[J]. Journal of Signal Processing, 2015, 31(6): 679–685. doi: 10.3969/j.issn.1003-0530.2015.06.007
    [35] COSTANTINI M and ROSEN P A. A generalized phase unwrapping approach for sparse data[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999, 1: 267–269. doi: 10.1109/IGARSS.1999.773467.
    [36] OJHA C, MANUNTA M, PEPE A, et al. An innovative region growing algorithm based on Minimum Cost Flow approach for Phase Unwrapping of full-resolution differential interferograms[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 5582–5585. doi: 10.1109/IGARSS.2012.6352054.
    [37] NOFERINI L, TAKAYAMA T, PIERACCINI M, et al. Analysis of ground-based SAR data with diverse temporal baselines[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1614–1623. doi: 10.1109/TGRS.2008.916216
    [38] OSMANOĞLU B, DIXON T H, and WDOWINSKI S. Three-dimensional phase unwrapping for satellite radar interferometry, I: DEM generation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1059–1075. doi: 10.1109/TGRS.2013.2247043
    [39] 张祥, 陆必应, 宋千. 地基SAR差分干涉测量大气扰动误差校正[J]. 雷达科学与技术, 2011, 9(6): 502–506. doi: 10.3969/j.issn.1672-2337.2011.06.004

    ZHANG Xiang, LU Biying, and SONG Qian. Atmospheric disturbance correction in ground-based SAR differential interferometry[J]. Radar Science and Technology, 2011, 9(6): 502–506. doi: 10.3969/j.issn.1672-2337.2011.06.004
    [40] NOFERINI L, PIERACCINI M, MECATTI D, et al. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(7): 1459–1471. doi: 10.1109/TGRS.2005.848707
    [41] HUANG Zengshu, SUN Jinping, LI Qing, et al. Time- and space-varying atmospheric phase correction in discontinuous ground-based synthetic aperture radar deformation monitoring[J]. Sensors, 2018, 18(11): 3883. doi: 10.3390/s18113883
    [42] IGLESIAS R, FABREGAS X, AGUASCA A, et al. Atmospheric phase screen compensation in ground-based SAR with a multiple-regression model over mountainous regions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2436–2449. doi: 10.1109/TGRS.2013.2261077
    [43] TAPETE D, CASAGLI N, LUZI G, et al. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments[J]. Journal of Archaeological Science, 2013, 40(1): 176–189. doi: 10.1016/j.jas.2012.07.024
    [44] KOS A, STROZZI T, STOCKMANN R, et al. Detection and Characterization of Rock Slope Instabilities Using a Portable Radar Interferometer (GPRI)[M]. MARGOTTINI C, CANUTI P, SASSA K. Landslide Science and Practice. Berlin, Heidelberg: Springer, 2013. doi: 10.1007/978-3-642-31445-2_42.
    [45] 刘作利, 刘景玉, 申修强, 等. 唐山马兰庄铁矿露天开采边坡变形监测的GB-InSAR技术[J]. 现代矿业, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047

    LIU Zuoli, LIU Jingyu, SHEN Xiuqiang, et al. Deformation monitoring of the open-pit slope of Malanshan iron mine in Tangshan City based on GB-InSAR[J]. Modern Mining, 2018(4): 165–170. doi: 10.3969/j.issn.1674-6082.2018.04.047
    [46] 毛聪, 胡程, 曾涛, 等. 地基SAR子图相干合成快速成像算法[J]. 信号处理, 2015, 31(11): 1396–1403. doi: 10.3969/j.issn.1003-0530.2015.11.002

    MAO Cong, HU Cheng, ZENG Tao, et al. Ground-based SAR fast imaging algorithm based on sub-image combination[J]. Journal of Signal Processing, 2015, 31(11): 1396–1403. doi: 10.3969/j.issn.1003-0530.2015.11.002
    [47] HU C, DENG Y, TIAN W, et al. A novel MIMO-SAR system applied for high-speed and high accuracy deformation measurement[C]. Proceedings of IET International Radar Conference 2018, Nanjing, China, 2018.
    [48] ZHU Mao, HU Cheng, ZENG Tao, et al. Experimental results and analysis for GBSAR deformation measurement[C]. IET International Radar Conference 2015, Hangzhou, China, 2015: 1–4. doi: 10.1049/cp.2015.1332.
    [49] MARCHISIO M, PIRODDI L, RANIERI G, et al. Comparison of natural and artificial forcing to study the dynamic behaviour of Bell Towers in low wind context by means of ground-based radar interferometry: The case of the Leaning Tower in Pisa[J]. Journal of Geophysics and Engineering, 2014, 11(5): 055004. doi: 10.1088/1742-2132/11/5/055004
    [50] LI Y, TIAN W, MEI H, et al. Weak vibration measurement technology and application based on FMCW radar system[C]. 2018 IET International Radar Conference, Nanjing, China, 2018.
    [51] MEI Hongyan, LI Yuqi, TIAN Weiming, et al. Weak vibration measurement based on MIMO imaging radar system[C]. Proceedings of 2018 China International SAR Symposium, Shanghai, China, 2018.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  5044
  • HTML全文浏览量:  1760
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-02-15
  • 网络出版日期:  2019-02-28

目录

    /

    返回文章
    返回