InSAR通道联合稀疏贝叶斯特征化成像

侯育星 徐刚

侯育星, 徐刚. InSAR通道联合稀疏贝叶斯特征化成像[J]. 雷达学报, 2018, 7(6): 750–757. DOI: 10.12000/JR18100
引用本文: 侯育星, 徐刚. InSAR通道联合稀疏贝叶斯特征化成像[J]. 雷达学报, 2018, 7(6): 750–757. DOI: 10.12000/JR18100
Hou Yuxing, Xu Gang. Feature Enhancement of Interferometric Synthetic Aperture Radar Image Formation Using Sparse Bayesian Learning in Joint Sparsity Approach[J]. Journal of Radars, 2018, 7(6): 750-757. doi: 10.12000/JR18100
Citation: Hou Yuxing, Xu Gang. Feature Enhancement of Interferometric Synthetic Aperture Radar Image Formation Using Sparse Bayesian Learning in Joint Sparsity Approach[J]. Journal of Radars, 2018, 7(6): 750-757. doi: 10.12000/JR18100

InSAR通道联合稀疏贝叶斯特征化成像

DOI: 10.12000/JR18100
基金项目: 国家自然科学基金项目(61701106);江苏省自然科学基金项目(BK20170698);陕西省创新人才推进计划-青年科技新星项目(S2019-ZC-XXXM-0035)
详细信息
    作者简介:

    侯育星(1987–),男,陕西西安人。陕西黄河集团有限公司设计研究所高级工程师,主要研究方向为雷达系统设计、雷达信号处理等。E-mail: houyuxing205@163.com

    徐 刚(1987–),男,山东枣庄人。东南大学副教授,硕士生导师,主要研究方向为雷达信号处理、雷达高分辨成像以及毫米波雷达成像等。E-mail: gangxu@seu.edu.cn

    通讯作者:

    徐刚  gangxu@seu.edu.cn

  • 中图分类号: TN 957

Feature Enhancement of Interferometric Synthetic Aperture Radar Image Formation Using Sparse Bayesian Learning in Joint Sparsity Approach

Funds: The National Natural Science Foundation of China (61701106), The Natural Science Foundation of Jiangsu Province (BK20170698), The Innovative Talent Promotion Program of Shaanxi Province-Youth Science and Technology New Star Project (S2019-ZC-XXXM-0035)
  • 摘要: 针对干涉合成孔径雷达(InSAR)成像,该文提出了一种通道联合结构化稀疏的贝叶斯成像算法,可实现图像稀疏特征化增强,以提升干涉相位噪声滤波和相干斑抑制性能。基于贝叶斯准则,利用多层级统计模型建立稀疏成像模型,结构化稀疏表示InSAR图像。在稀疏成像求解中,利用最大期望(EM)算法进行图像重构和多层级统计参数估计。由于能够联合利用通道稀疏统计特性,所提算法能够有效提升InSAR幅度和相位噪声滤波性能。最后,通过实验分析进一步验证该文算法的有效性。

     

  • 图  1  InSAR成像几何示意图

    Figure  1.  InSAR imaging geometry

    图  2  仿真数据实验

    Figure  2.  Simulated data experiments

    图  3  山区场景成像结果

    Figure  3.  Imaging results on mountain scenes

    图  5  方位成像脉冲响应

    Figure  5.  Pulse response of azimuth imaging.

    图  4  城区场景成像结果

    Figure  4.  Imaging results on urban scenes

    表  1  本文算法流程框图

    Table  1.   Algorithm flow chart in this paper

    InSAR稀疏贝叶斯特征化成像算法
     输入:预处理多通道数据 ${{{{s}}}_l}$和观测矩阵 ${{{T}}_l}$
     WHILE循环(符合迭代条件时)
      (1) 稀疏成像
       (a) 利用式(3)更新自适应表征字典 ${{{Φ}}_l}$中的 ${{{P}}_l}$部分;
       (b) 利用式(10)和式(11)更新 ${{{μ}}_l}$和 ${{{Σ}}_l}$。
      (2) 参数估计
       (a) 利用式(16)估计 ${\gamma _{mn}}$和 $r$,更新协方差矩阵 ${{{Σ}}_b}$;
       (b) 利用式(17)更新噪声参数 $\alpha $。
     END
     输出: 特征化重构图像 ${\hat {{b}}_l}{\rm{ = }}{{{μ}}_l}$.
    下载: 导出CSV

    表  2  ENL估计

    Table  2.   ENL estimates

    不同成像算法 区域1 区域2
    传统SAR成像 0.8978 0.9742
    文献[15]的方法 24.9886 96.2014
    本文方法 30.1216 102.3843
    下载: 导出CSV
  • [1] Goldstein R M, Zebker H A, and Werner C L. Satellite radar interferometry: Two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713–720. DOI: 10.1029/RS023i004p00713
    [2] 斯奇, 王宇, 邓云凯, 等. 一种基于最大后验框架的聚类分析多基线干涉SAR高度重建算法[J]. 雷达学报, 2017, 6(6): 640–652. DOI: 10.12000/JR17043

    Si Qi, Wang Yu, Deng Yun-kai, et al. A novel cluster-analysis algorithm based on MAP framework for multi-baseline InSAR height reconstruction[J]. Journal of Radars, 2017, 6(6): 640–652. DOI: 10.12000/JR17043
    [3] 邓云凯, 王宇. 先进双基SAR技术研究(英文)[J]. 雷达学报, 2014, 3(1): 1–9. DOI: 10.3724/SP.J.1300.2014.13089

    Deng Yun-kai and Wang R. Exploration of advanced bistatic SAR experiments[J]. Journal of Radars, 2014, 3(1): 1–9. DOI: 10.3724/SP.J.1300.2014.13089
    [4] Kwok R and Fahnestock M A. Ice sheet motion and topography from radar interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1): 189–200. DOI: 10.1109/36.481903
    [5] Cloude S R and Papathanassiou K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. DOI: 10.1109/36.718859
    [6] López-Martínez C and Fàbregas X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2553–2566. DOI: 10.1109/TGRS.2002.806997
    [7] Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. DOI: 10.1109/TPAMI.1985.4767641
    [8] Wu N, Feng D Z, and Li J X. A locally adaptive filter of interferometric phase images[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1): 73–77. DOI: 10.1109/LGRS.2005.856703
    [9] 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. DOI: 10.12000/JR17020

    Li Hang, Liang Xing-dong, Zhang Fu-bo, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630–639. DOI: 10.12000/JR17020
    [10] 丁斌, 向茂生, 梁兴东. 射频干扰对机载P波段重复轨道InSAR系统的影响分析[J]. 雷达学报, 2012, 1(1): 82–90. DOI: 10.3724/SP.J.1300.2012.10062

    Ding Bin, Xiang Mao-sheng, and Liang Xing-dong. Analysis of the effect of radio frequency interference on repeat track airborne InSAR system[J]. Journal of Radars, 2012, 1(1): 82–90. DOI: 10.3724/SP.J.1300.2012.10062
    [11] Meng D, Sethu V, Ambikairajah E, et al. A novel technique for noise reduction in InSAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2): 226–230. DOI: 10.1109/LGRS.2006.888845
    [12] Zha X J, Fu R S, Dai Z Y, et al. Noise reduction in interferograms using the wavelet packet transform and wiener filtering[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 404–408. DOI: 10.1109/LGRS.2008.916066
    [13] Denis L, Tupin F, Darbon J, et al. Joint regularization of phase and amplitude of InSAR data: application to 3-D reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3774–3785. DOI: 10.1109/TGRS.2009.2023668
    [14] Shabou A, Baselice F, and Ferraioli G. Urban digital elevation model reconstruction using very high resolution multichannel InSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4748–4758. DOI: 10.1109/TGRS.2012.2191155
    [15] Xu G, Xing M D, Xia X G, et al. Sparse regularization of interferometric phase and amplitude for InSAR image formation based on Bayesian representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2123–2136. DOI: 10.1109/TGRS.2014.2355592
    [16] Li L C, Li D J J, and Pan Z H. Compressed sensing application in interferometric synthetic aperture radar[J]. Science China Information Sciences, 2017, 60(10): 102305. DOI: 10.1007/s11432-016-9017-6
    [17] Wang L, Zhao L F, Bi G A, et al. Enhanced ISAR imaging by exploiting the continuity of the target scene[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5736–5750. DOI: 10.1109/TGRS.2013.2292074
    [18] Duan H P, Zhang L Z, Fang J, et al. Pattern-coupled sparse Bayesian learning for inverse synthetic aperture radar imaging[J]. IEEE Signal Processing Letters, 2015, 22(11): 1995–1999. DOI: 10.1109/LSP.2015.2452412
    [19] Xu G, Yang L, Bi G A, et al. Enhanced ISAR imaging and motion estimation with parametric and dynamic sparse Bayesian learning[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 940–952. DOI: 10.1109/TCI.2017.2750330
    [20] Xu G, Sheng J L, Zhang L, et al. Performance improvement in multi-ship imaging for ScanSAR based on sparse representation[J]. Science China Information Sciences, 2012, 55(8): 1860–1875. DOI: 10.1007/s11432-012-4626-3
    [21] López-Martínez C and Fàbregas X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2553–2566. DOI: 10.1109/TGRS.2002.806997
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2347
  • HTML全文浏览量:  513
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-26
  • 修回日期:  2018-12-18
  • 网络出版日期:  2018-12-28

目录

    /

    返回文章
    返回