四元数域宽带鲁棒自适应波束形成

段晓菲 刘志文 徐友根

段晓菲, 刘志文, 徐友根. 四元数域宽带鲁棒自适应波束形成[J]. 雷达学报, 2019, 8(1): 117–124. doi: 10.12000/JR18083
引用本文: 段晓菲, 刘志文, 徐友根. 四元数域宽带鲁棒自适应波束形成[J]. 雷达学报, 2019, 8(1): 117–124. doi: 10.12000/JR18083
DUAN Xiaofei, LIU Zhiwen, and XU Yougen. Robust quaternion-valued wideband adaptive beamforming[J]. Journal of Radars, 2019, 8(1): 117–124. doi: 10.12000/JR18083
Citation: DUAN Xiaofei, LIU Zhiwen, and XU Yougen. Robust quaternion-valued wideband adaptive beamforming[J]. Journal of Radars, 2019, 8(1): 117–124. doi: 10.12000/JR18083

四元数域宽带鲁棒自适应波束形成

DOI: 10.12000/JR18083
基金项目: 国家自然科学基金(61490691, 61331019)
详细信息
    作者简介:

    段晓菲(1995–),女,北京理工大学硕士研究生,研究方向为阵列信号处理及其应用。E-mail: duanxx7@163.com

    刘志文(1962–),男,北京理工大学信息与电子学院教授,信号与图像处理研究所所长,博士生导师,研究方向为阵列信号处理及应用、医学信号与图像处理、可穿戴医学电子。E-mail: zwliu@bit.edu.cn

    徐友根(1975–),男,北京理工大学信息与电子学院教授,信号与图像处理研究所副所长,博士生导师,研究方向为阵列信号处理及其应用。E-mail: yougenxu@bit.edu.cn

    通讯作者:

    刘志文  zwliu@bit.edu.cn

  • 中图分类号: TN911.7

Robust Quaternion-valued Wideband Adaptive Beamforming

Funds: The National Natural Science Foundation of China (61490691, 61331019)
More Information
  • 摘要: 该文提出一种基于四元数的宽带鲁棒自适应波束形成方法。在利用四元数构造阵元输出的基础上,通过期望信号复包络对齐技术,建立四元数域宽带对合增广宽线性信号模型,以联合利用四元数阵列输出矢量的3种对合信息和2阶统计特性以及信号非圆信息,采用信号加干扰子空间投影方式,有效提取期望信号,抑制多个不相关干扰和噪声,进而实现四元数域宽带鲁棒自适应波束形成。同其它宽带波束形成方法相比,该方法对非圆信号的接收性能提升,可以实现阵列虚拟孔径扩展,有效克服指向误差带来的性能下降问题。计算机仿真结果验证了该方法的性能。

     

  • 图  1  六元阵列输出波形比较

    Figure  1.  Output waveform of six-element array

    图  2  两元阵列输出波形比较

    Figure  2.  Output waveform of two-element array

    图  3  波形估计偏差随输入信噪比变化曲线

    Figure  3.  RMSE curves versus SNR

    图  4  波形估计偏差随快拍数变化曲线

    Figure  4.  RMSE curves versus snapshot number

    图  5  有误差情况下波形估计偏差随输入信噪比变化曲线

    Figure  5.  RMSE curves versus SNR under error conditions

    图  6  有误差情况下波形估计偏差随输入信噪比变化曲线

    Figure  6.  RMSE curves versus SNR under error conditions

    图  7  有误差情况下波形估计偏差随快拍数变化曲线

    Figure  7.  RMSE curves versus snapshot number under error conditions

  • [1] GOU X M, XU Y G, LIU Z W, et al. Quaternion-capon beamformer using crossed-dipole arrays[C]. Proceedings of the 4th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 2011: 34–37. doi: 10.1109/MAPE.2011.6156140.
    [2] TAO J W and CHANG W X. The MVDR beamformer based on hypercomplex processes[C]. Proceedings of 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 2012: 273–277. doi: 10.1109/ICCSEE.2012.430.
    [3] TAO J W and CHANG W X. A novel combined beamformer based on hypercomplex processes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1276–1289. doi: 10.1109/TAES.2013.6494413
    [4] ZHANG X R, LIU W, XU Y G, et al. Quaternion-valued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint[J]. Signal Processing, 2014, 104: 274–283. doi: 10.1016/j.sigpro.2014.04.006
    [5] LIU Z W, WANG Y X, ZHANG X R, et al. Spatially smoothed Quaternion-Capon beamforming in the presence of coherent interferences[J]. Journal of Beijing Institute of Technology, 2016, 25(2): 225–230. doi: 10.15918/j.jbit1004-0579.201625.0210
    [6] TOOK C C and MANDIC D P. A quaternion widely linear adaptive filter[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4427–4431. doi: 10.1109/TSP.2010.2048323
    [7] ZHANG X R, LIU Z W, FAN Z Y, et al. Quaternion-valued robust adaptive beamformer based on widely linear processing[C]. Proceedings of the 19th International Conference on Digital Signal Processing, Hong Kong, China, 2014: 719–724. doi: 10.1109/ICDSP.2014.6900758.
    [8] 刘志文, 王荔, 徐友根. 四元数域对合增广宽线性自适应波束形成[J]. 电子与信息学报, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988

    LIU Zhi-wen, WANG Li, and XU You-gen. Quaternion-valued widely linear adaptive beamforming via involution augmentation[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1525–1531. doi: 10.11999/JEIT160988
    [9] FROST O L. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE, 1972, 60(8): 926–935. doi: 10.1109/PROC.1972.8817
    [10] MENG E and CANTONI A. Derivative constraints for broad-band element space antenna array processors[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31(6): 1378–1393. doi: 10.1109/TASSP.1983.1164219
    [11] BUCKLEY K M. Spatial/spectral filtering with linearly constrained minimum variance beamformers[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(3): 249–266. doi: 10.1109/TASSP.1987.1165142
    [12] CHEVALIER P and BLIN A. Widely linear MVDR beamformers for the reception of an unknown signal corrupted by noncircular interferences[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5323–5336. doi: 10.1109/TSP.2007.899394
    [13] WANG G H, LIE J P, and SEE C M S. A robust approach to optimum widely linear MVDR beamformer[C]. Proceedings of 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012: 2593–2596. doi: 10.1109/ICASSP.2012.6288447.
    [14] XU Y G, MA J Y, LIU Z W, et al. A class of diagonally loaded robust Capon beamformers for noncircular signals of interest[J]. Signal Processing, 2014, 94: 670–680. doi: 10.1016/j.sigpro.2013.07.013
    [15] CHEVALIER P, DELMAS J P, and OUKACI A. Optimal widely linear MVDR beamforming for noncircular signals[C]. Proceedings of 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009: 3573–3576. doi: 10.1109/ICASSP.2009.4960398.
    [16] HAMILTON W R. On a new species of imaginary quantities connected with a theory of quaternions[J]. Proceedings of the Royal Irish Academy, 1843, 2: 424–434.
    [17] WARD J P. Quaternions and Cayley Numbers: Algebra and Applications[M]. Dordrecht: Kluwer, 1997: 54–102. doi: 10.1007/978-94-011-5768-1.
    [18] ELL T A and SANGWINE S J. Quaternion involutions and anti-involutions[J]. Computers & Mathematics with Applications, 2007, 53(1): 137–143. doi: 10.1016/j.camwa.2006.10.029
    [19] JIANG M D, LI Y, and LIU W. Properties of a general quaternion-valued gradient operator and its applications to signal processing[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(2): 83–95. doi: 10.1631/FITEE.1500334
  • 加载中
图(7)
计量
  • 文章访问数:  2691
  • HTML全文浏览量:  643
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-29
  • 修回日期:  2018-11-23
  • 网络出版日期:  2019-02-28

目录

    /

    返回文章
    返回