基于直方统计特征的多特征组合航迹关联

徐亚圣 丁赤飚 任文娟 许光銮

徐亚圣, 丁赤飚, 任文娟, 等. 基于直方统计特征的多特征组合航迹关联[J]. 雷达学报, 2019, 8(1): 25–35. doi: 10.12000/JR18028
引用本文: 徐亚圣, 丁赤飚, 任文娟, 等. 基于直方统计特征的多特征组合航迹关联[J]. 雷达学报, 2019, 8(1): 25–35. doi: 10.12000/JR18028
XU Yasheng, DING Chibiao, REN Wenjuan, et al. Multi-feature combination track-to-track association based on histogram statistics feature[J]. Journal of Radars, 2019, 8(1): 25–35. doi: 10.12000/JR18028
Citation: XU Yasheng, DING Chibiao, REN Wenjuan, et al. Multi-feature combination track-to-track association based on histogram statistics feature[J]. Journal of Radars, 2019, 8(1): 25–35. doi: 10.12000/JR18028

基于直方统计特征的多特征组合航迹关联

DOI: 10.12000/JR18028
基金项目: 国家自然科学基金(61725105, 61331017)
详细信息
    作者简介:

    徐亚圣(1993–),男,湖南耒阳人。2015年在吉林大学获得工学学士学位,现为中国科学院大学,中国科学院电子学研究所硕士研究生。主要研究方向为航迹关联、机器学习。E-mail: xuyasheng93@163.com

    丁赤飚(1969–),男,陕西西安人,研究员,博士生导师。1997年在北京航空航天大学获得博士学位,现任中国科学院电子学研究所副所长,微波成像技术国家重点实验室主任,国家863计划专家。主要研究方向为雷达信号处理。E-mail: cbding@mail.ie.ac.cn

    任文娟(1982–),女,河南焦作人,副研究员,博士。2011年在中国科学院电子学研究所获得博士学位,现为中国科学院电子学研究所中国科学院空间信息处理与应用系统技术重点实验室副研究员,主要研究方向为多源遥感信息融合处理与应用技术。E-mail: wjren@mail.ie.ac.cn

    许光銮(1978–),男,浙江天台人,研究员,博士生导师。2005年在中国科学院电子学研究所获得博士学位,现为中国科学院电子学研究所研究员,中国科学院空间信息处理与应用系统技术重点实验室主任,主要研究方向为地理空间信息挖掘与应用技术。E-mail: gluanxu@mail.ie.ac.cn

    通讯作者:

    徐亚圣 xuyasheng93@163.com

  • 中图分类号: TP391

Multi-feature Combination Track-to-track Association Based on Histogram Statistics Feature

Funds: The National Natural Science Foundation of China (61725105, 61331017)
More Information
  • 摘要: 现有的航迹关联方法主要有基于统计和基于模糊数学两大类方法。基于统计的方法大多依赖阈值的设置,基于模糊数学的方法参数设置复杂,且多数方法相关比较时只考虑单个航迹点的信息。针对现有问题,该文首先从航迹的整体出发,在传统欧式距离度量的基础上,提出了一种距离分布直方图的特征并提取了航迹的相似特征,有效地利用了航迹间的整体特性,具有较好的抗噪声性能以及关联准确率。其次充分考虑了船舶运动特征以及不同数据源位置精度,提取了航迹间的速度差分布直方图特征、传感器来源特征。然后将这些特征组合并利用机器学习的方法训练关联模型,有效地避免了需要人工设定阈值以及参数设置复杂的问题。最后,该文构建了一个真实的船舶数据集,实验结果表明距离分布直方图特征相比传统的距离特征总体关联准确率提高了3.23%~11.65%,组合特征相较于单一的距离分布直方图特征总体关联准确率提高了0.068%,验证了该文方法的有效性。

     

  • 图  1  距离分布直方图特征计算示意图

    Figure  1.  Schematic diagram of feature calculation of distance distribution histogram

    图  2  DTW航迹点对应关系

    Figure  2.  Correspondence of DTW track points

    图  3  DTW算法匹配关系

    Figure  3.  DTW algorithm matching relationship

    图  4  关联流程图

    Figure  4.  Association flow chart

    图  5  两条航迹对应点时间不同示意图

    Figure  5.  Different timings of the corresponding points on the two tracks

    图  6  航迹线性插值采样示意图

    Figure  6.  Linear interpolation sampling schematic diagram

    图  7  航迹样本拆分示意图

    Figure  7.  Schematic diagram of separation of track samples

    图  8  不同方法ROC曲线

    Figure  8.  Different methods of ROC curves

    图  9  传统距离特征无法识别而距离分布直方图能够识别的目标

    Figure  9.  The targets that can’t be identified by traditional distance feature but can be identified by distance distribution histogram

    图  10  距离分布直方图特征关联失败的目标

    Figure  10.  The targets of distance distribution histogram feature error association

    图  11  特征组合ROC曲线

    Figure  11.  Feature combination ROC curve

    图  12  单一特征错误关联组合特征正确识别情况

    Figure  12.  Correct identification of single feature miscorrelation combination features

    图  13  组合特征关联失败的目标

    Figure  13.  The targets of combination features error association

    图  14  不同机器学习方法ROC曲线

    Figure  14.  ROC curves for different machine learning methods

    表  1  平均距离特征阈值方法与机器学习方法指标对比

    Table  1.   Comparison of average distance characteristics threshold method and machine learning method index

    阈值精度查准率查全率F1
    机器学习0.94780.96170.95900.9603
    精度最高阈值4524.70.89060.91700.91700.9170
    平均数阈值76231.50.59981.00000.39270.5640
    中位数阈值8878.80.81420.99480.72180.8366
    下载: 导出CSV

    表  2  加权距离特征阈值方法与机器学习方法指标对比

    Table  2.   Comparison of weighted distance characteristics threshold method and machine learning method index

    阈值精度查准率查全率F1
    机器学习0.92640.95380.93350.9435
    精度最高阈值0.00030.86260.98220.80620.8856
    平均数阈值0.26810.45281.00000.16790.2902
    中位数阈值0.00080.80800.98580.71900.8335
    下载: 导出CSV

    表  3  最大距离特征阈值方法与机器学习方法指标对比

    Table  3.   Comparison of maximum distance characteristics threshold method and machine learning method index

    阈值精度查准率查全率F1
    机器学习0.86360.89040.90430.8973
    精度最高阈值14024.40.80360.93770.75200.8346
    平均数阈值108357.60.60940.96960.40260.5866
    中位数阈值20853.20.77130.94710.69170.7995
    下载: 导出CSV

    表  4  不同特征指标对比

    Table  4.   Comparison of different characteristics

    特征精度查准率查全率F1AUC
    距离分布直方图0.98010.98260.98730.98490.9768
    平均距离0.94780.96170.95900.93900.9426
    加权距离0.92640.95380.93350.94350.9373
    最大距离0.86360.89040.90430.89730.8446
    下载: 导出CSV

    表  5  组合特征指标对比

    Table  5.   Comparison of composite features

    组合特征精度查准率查全率F1AUC
    DDH0.98010.98580.98400.98490.9783
    DDH+DTW0.98290.98590.98820.98700.9804
    DDH+DTW+SDDH0.98420.98730.98870.98800.9820
    DDH+DTW+SDDH+数据来源特征0.98690.99010.99010.99010.9855
    下载: 导出CSV

    表  6  不同机器学习方法指标对比

    Table  6.   Comparison of different machine learning indicators

    学习方法精度查准率查全率F1AUC
    Tree0.98630.98870.99060.98960.9843
    Random forest0.98730.98960.99100.99030.9978
    Adaboost0.98850.99150.99100.99130.9965
    Bagging0.99160.99250.99480.99360.9979
    下载: 导出CSV
  • [1] 杨威, 陈杰, 李春升. 面向目标特性精细提取的SAR数据融合成像处理方法[J]. 雷达学报, 2015, 4(1): 29–37. doi: 10.12000/JR15017

    YANG Wei, CHEN Jie, and LI Chun-sheng. SAR data fusion imaging method oriented to target feature extraction[J]. Journal of Radars, 2015, 4(1): 29–37. doi: 10.12000/JR15017
    [2] 李伟, 王兴亮, 邹鲲, 等. 基于数据融合和陷波滤波的MIMO雷达抗欺骗干扰算法[J]. 雷达学报, 2012, 1(3): 246–252. doi: 10.3724/SP.J.1300.2012.20060

    LI Wei, WANG Xing-liang, ZOU Kun, et al. Anti deceptive jamming for MIMO radar based on data fusion and notch filtering[J]. Journal of Radars, 2012, 1(3): 246–252. doi: 10.3724/SP.J.1300.2012.20060
    [3] LIGGINS M E, HALL D L, and LLINAS J. Handbook of Multisensor Data Fusion: Theory and Practice[M]. 2nd ed., Boca Raton, FL: CRC Press, 2009.
    [4] 何友, 王国宏, 陆大䋮, 等. 多传感器信息融合及应用[M]. 第2版, 北京: 电子工业出版社, 2007.

    HE You, WANG Guo-hong, LU Da-jin, et al. Multisensor Information Fusion with Applications[M]. 2nd ed., Beijing: Publishing House of Electronics Industry, 2007.
    [5] CHANG C and YOUENS L C. Measurement correlation for multiple sensor tracking in a dense target environment[J]. IEEE Transactions on Automatic Control, 1982, 27(6): 1250–1252. doi: 10.1109/TAC.1982.1103107
    [6] Bar-Shalom Y. On the track-to-track correlation problem[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 571–572. doi: 10.1109/TAC.1981.1102635
    [7] AZIZ A M, TUMMALA M, and CRISTI R. Fuzzy Logic Data Correlation Approach in Multisensor-Multitarget Tracking Systems[M]. Elsevier North-Holland, Inc, 1999. https://www.sciencedirect.com/science/article/pii/S0165168499000080.
    [8] SMITH III J F. Fuzzy logic multisensor association algorithm[C]. Proceedings of SPIE Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 1997: 76–87. doi: 10.1117/12.280788.
    [9] YANG Y T, LIANG Y, YANG Y B, et al. Asynchronous track-to-track association algorithm based on dynamic time warping distance[C]. Proceedings of the 34th Control Conference, Hangzhou, China, 2015: 4772–4777.
    [10] 董凯, 王海鹏, 刘瑜. 基于拓扑统计距离的航迹抗差关联算法[J]. 电子与信息学报, 2015, 37(1): 50–55. doi: 10.11999/JEIT140244

    DONG Kai, WANG Hai-peng, and LIU Yu. Anti-bias track association algorithm based on topology statistical distance[J]. Journal of Electronics &Information Technology, 2015, 37(1): 50–55. doi: 10.11999/JEIT140244
    [11] STONE L D, TRAN T M, and WILLIAMS M L. Improvement in track-to-track association from using an adaptive threshold[C]. Proceedings of the 12th International Conference on Information Fusion, Seattle, WA, USA, 2009: 1627–1633.
    [12] AGRAWAL R, FALOUTSOS C, and SWAMI A N. Efficient similarity search in sequence databases[C]. Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Berlin, Heidelberg, Germany, 1993: 69–84.
    [13] BARCZEWSKA K and DROZD A. Comparison of methods for hand gesture recognition based on dynamic time warping algorithm[C]. Proceedings of 2013 Federated Conference on Computer Science and Information Systems, Poland, 2013: 207–210.
    [14] BANKÓ Z and ABONYI J. Correlation based dynamic time warping of multivariate time series[J]. Expert Systems with Applications, 2012, 39(17): 12814–12823. doi: 10.1016/j.eswa.2012.05.012
    [15] CASACUBERTA F, VIDAL E, and RULOT H. On the metric properties of dynamic time warping[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(11): 1631–1633. doi: 10.1109/TASSP.1987.1165065
    [16] HUANG B and KINSNER W. ECG frame classification using dynamic time warping[C]. Proceedings of 2002 Canadian Conference on Electrical and Computer Engineering, Winnipeg, Manitoba, Canada, 2002: 1105–1110.
    [17] JABLONSKI B. Quaternion dynamic time warping[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1174–1183. doi: 10.1109/TSP.2011.2177832
    [18] FU C X, ZHANG P L, JIANG J, et al. A Bayesian approach for sleep and wake classification based on dynamic time warping method[J]. Multimedia Tools and Applications, 2017, 76(17): 17765–17784. doi: 10.1007/s11042-015-3053-z
    [19] BAUMANN M, OZDOGAN M, RICHARDSON A D, et al. Phenology from landsat when data is scarce: Using MODIS and dynamic time-warping to combine multi-year landsat imagery to derive annual phenology curves[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 54: 72–83. doi: 10.1016/j.jag.2016.09.005
    [20] VARATHARAJAN R, MANOGARAN G, PRIYAN M K, et al. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm[J]. Cluster Computing, 2017(6): 1–10. doi: 10.1007/s10586-017-0977-2
    [21] ZHOU N C, WANG J, and WANG Q G. A novel estimation method of metering errors of electric energy based on membership cloud and dynamic time warping[J]. IEEE Transactions on Smart Grid, 2017, 8(3): 1318–1329. doi: 10.1109/TSG.2016.2619375
    [22] WAN Y, CHEN X L, and SHI Y. Adaptive cost dynamic time warping distance in time series analysis for classification[J]. Journal of Computational and Applied Mathematics, 2017, 319: 514–520. doi: 10.1016/j.cam.2017.01.004
    [23] SINGER R A and KANYUCK A J. Computer Control of Multiple Site Track Correlation[M]. Tarrytown, NY, USA: Pergamon Press, Inc., 1971.
    [24] DITZLER W R. A demonstration of multisensor tracking[C]. Proceedings of the 1987 Tri-Service Data Fusion Symposium, JHU/APL, Laurel, Md., 1987: 303–311.
    [25] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.

    ZHOU Zhi-hua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016.
    [26] 周晓安. VTS系统中多传感器目标航迹关联算法研究[D]. [硕士论文], 南京信息工程大学, 2014.

    ZHOU Xiao-an. The research of track association for multi-sensor target in VTS system[D]. [Master dissertation], Nanjing University of Information Science & Technology, 2014.
    [27] 周晓安, 高贵明. 自适应阈值航迹关联算法与实现[J]. 现代防御技术, 2014, 42(4): 193–198. doi: 10.3969/j.issn.1009-086x.2014.04.031

    ZHOU Xiao-an and GAO Gui-ming. Adaptive threshold algorithm and implementation for track-to-track association[J]. Modern Defense Technology, 2014, 42(4): 193–198. doi: 10.3969/j.issn.1009-086x.2014.04.031
    [28] HAN Jia-wei and KAMBER M. 数据挖掘: 概念与技术[M]. 范明, 孟小峰, 译. 北京: 机械工业出版社, 2007.

    HAN Jia-wei and KAMBER M. Data Mining: Concepts and Techniques[M]. FAN Ming, MENG Xiao-feng, trans. Beijing: China Machine Press, 2007.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  3614
  • HTML全文浏览量:  1018
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-05-29
  • 网络出版日期:  2019-02-28

目录

    /

    返回文章
    返回