Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

合成孔径激光雷达光学系统和作用距离分析

李道京 胡 烜

陈慧, 田湘, 李子豪, 等. 共形FDA-MIMO雷达降维目标参数估计研究[J]. 雷达学报, 2021, 10(6): 811–821. DOI: 10.12000/JR21197
引用本文: 李道京, 胡 烜. 合成孔径激光雷达光学系统和作用距离分析[J]. 雷达学报, 2018, 7(2): 263-274. doi: 10.12000/JR18017
CHEN Hui, TIAN Xiang, LI Zihao, et al. Reduced-dimension target parameter estimation for conformal FDA-MIMO radar[J]. Journal of Radars, 2021, 10(6): 811–821. DOI: 10.12000/JR21197
Citation: Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017

合成孔径激光雷达光学系统和作用距离分析

DOI: 10.12000/JR18017
基金项目: 国家自然科学基金面上项目(61771449)
详细信息
    作者简介:

    李道京(1964–),男,中国科学院电子学研究所研究员,博士生导师,主要研究方向为雷达系统和雷达信号处理

    胡 烜(1992–),男,中国科学院电子学研究所博士生,主要研究方向为雷达信号处理

    通讯作者:

    李道京   lidj@mail.ie.ac.cn

Optical System and Detection Range Analysis of Synthetic Aperture Ladar

Funds: The National Natural Science Foundation of China (61771449)
  • 摘要: 该文对合成孔径激光雷达(Synthetic Aperture Ladar, SAL)光学系统和作用距离进行了分析。根据SAL成像特点,提出了SAL使用非成像衍射光学系统的概念,并引入相控阵模型对其性能进行分析。通过在压缩光路中馈源和主镜两处使用二元光学器件,在口径300 mm条件下将2°接收视场信号收入光纤,对所需的相位参数和对应的波束方向图进行了计算仿真。给出了SAL作用距离方程,分析了相干探测和信号积累增益,明确了SAL具有良好的微弱信号探测能力的结论。针对实际应用需求,给出了一个远距离高分辨率机载SAL系统参数和工作模式。5 cm分辨率时,在连续条带成像模式下,其作用距离可达5 km,幅宽可达1.5 km;在滑动聚束成像模式下,作用距离可达10 km,幅宽可达1 km。

     

  • In recent years, Frequency Diverse Array (FDA) radar has received much attention due to its range-angle-time-dependent beampattern[1,2]. Combining the advantages of FDA and traditional phased array Multiple-Input Multiple-Output (MIMO) radar in the degree of freedom, the FDA Multiple-Input Multiple Output (FDA-MIMO) radar was proposed in Ref. [3] and applied in many fields[4-9]. For parameter estimation algorithm, the authors first proposed a FDA-MIMO target localization algorithm based on sparse reconstruction theory[10], and an unbiased joint range and angle estimation method was proposed in Ref. [11]. The work of Ref. [12] further proved that the FDA-MIMO is superior to traditional MIMO radar in range and angle estimation performance, and the authors of Ref. [13] introduced a super-resolution MUSIC algorithm for target location, and analyzed its resolution threshold. Meanwhile, high-resolution Doppler processing is utilized for moving target parameter estimation[14]. The Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and PARAllel FACtor (PARAFAC) was proposed in Ref. [15], which is a search-free algorithm for FDA-MIMO.

    Moreover, the research of conformal array has received more and more attention. Conformal array is a non-planar array that can be completely attached to the surface of the carrier[16]. It has significant advantages such as reducing the aerodynamic impact on the carrier and smaller radar cross section[17]. In addition, conformal array can achieve wide-angle scanning with a lower SideLobe Level (SLL)[18]. Different from traditional arrays, the element beampattern of conformal array needs to be modeled separately in the parameter estimation due to the difference of carrier curvature[19-21].

    As far as we know, most of the existing researches on FDA-MIMO are based on linear array, while there is little research on the combination of FDA-MIMO and conformal array[22]. In this paper, we replace the receiving array in the traditional FDA-MIMO with conformal array. Compared with conventional FDA-MIMO, conformal FDA-MIMO inherits the merits of conformal array and FDA-MIMO, which can effectively improve the stealth and anti-stealth performance of the carrier, and reduce the volume and the air resistance of the carrier. For conformal FDA-MIMO, we further study the parameters estimation algorithm. The major contributions of this paper are summarized as follows:

    (1) A conformal FDA-MIMO radar model is first formulated.

    (2) The parameter estimation Cramér-Rao Lower Bound (CRLB) for conformal FDA-MIMO radar is derived.

    (3) Inspired by the existing work of Refs. [23,24], a Reduced-Dimension MUSIC (RD-MUSIC) algorithm for conformal FDA-MIMO radar is correspondingly proposed to reduce the complexity.

    The rest of the paper consists of four parts. Section 2 formulates the conformal FDA-MIMO radar model, and Section 3 derives a RD-MUSIC algorithm for conformal FDA-MIMO radar. Simulation results for conformal FDA-MIMO radar with semi conical conformal receiving array are provided in Section 4. Finally, conclusions are drawn in Section 5.

    For the convenience of analysis, we consider a monostatic conformal FDA-MIMO radar which is composed by a M-element linear FDA transmitting array and a N-element conformal receiving array, as shown in Fig. 1. d denotes the inter-element spacing, the carrier frequency at the mth transmitting element is fm=f1+Δf(m1), m=1,2,,M where f1 is the transmission frequency of the first antenna element, which is called as reference frequency, and Δf is the frequency offset between the adjacent array elements.

    Figure  1.  Conformal FDA-MIMO radar

    The complex envelope of the transmitted signal of the mth transmitting element is denoted as φm(t), assume the transmitting waveforms have orthogonality,

    Tpφm(t)φm1(tτ)dt=0,m1m (1)

    where τ denotes the time delay, Tp denotes the pulse duration, and () is conjugate operator. The signal transmitted from the mth element can be expressed as

    sm(t)=am(t,θ,ϕ,r)φm(t),0tTp (2)

    where

    am(t,θ,ϕ,r)=exp{j2π((m1)Δfrcf1(m1)dsinαc(m1)Δft)} (3)

    is the mth element of the transmitting steering vector according to the phase difference between adjacent elements, the angle between far-field target and transmitting array is denoted as α=arcsin(sinθcosϕ), where arcsin() denotes arcsine operator, α can be calculated by using the inner product between the target vector and unit vector along the X-axis. θ,ϕ,r are the elevation, azimuth and range between the target and the origin point, respectively. The phase difference between adjacent elements is

    Δψt0=2π(Δfrcf1dsinαcΔft) (4)

    where c is light speed. For far-field target P(r,θ,ϕ), the transmitting steering vector is

    a0(t,θ,ϕ,r)=[1,exp{jΔψt0},,exp{j(M1)Δψt0}]T (5)

    For the conformal receiving array, as shown in Fig. 1(b), the time delay between target P(r,θ,ϕ) and the nth receiving array element is

    τn=rn/c (6)

    where rn is the range between target and the nth receiving array element. For far-field assumption, the rn can be approximated as

    rnrpnr (7)

    where r denotes the range between the target and the origin point, pn=xnex+yney+znez denotes the position vector from the nth element to origin point, and r=sinθcosϕex+sinθsinϕey+cosθez is the unit vector in target orientation, where ex,ey and ez are the unit vectors along the X- , Y- , and Z-axis, respectively. (xn,yn,zn) are the coordinates of the nth element in the Cartesian coordinate system. For simplicity, we let u=sinθcosϕ, v=sinθcosϕ, so the time delay τn=(r(uxn+vyn+cosθzn))/c. The time delay between the first element and the nth element at the receiving array is expressed as

    Δτrn=τ1τn=u(xnx1)+v(yny1)+cosθ(znz1)c (8)

    And the corresponding phase difference between the first element and the nth element is

    ΔψRn=2πf1Δτrn (9)

    Consequently, the receiving steering vector is

    b(θ,ϕ)=[r1(θ,ϕ),r2(θ,ϕ)exp(jΔψr2),,rN(θ,ϕ)exp(jΔψrN)]T (10)

    where rn(θ,ϕ) is the nth conformal receiving array element beampattern which should be designed in its own local Cartesian coordinate system. In this paper, we utilize Euler rotation method to establish transformation frame between local coordinate system and global coordinate system[25,26].

    Then the total phase difference between adjacent transmitting array elements can be rewritten as

    Δψt=2π(Δf2rcf1dsinαcΔft) (11)

    where the factor 2r in the first term represents the two-way transmission and reception, and the correspondingly transmitting steering vector is written as

    a(t,θ,ϕ,r)=[1,exp{jΔψt},,exp{j(M1)Δψt}]T (12)

    Assuming L far-field targets are located at (θi,ϕi,Ri), i=1,2,,L and snapshot number is K. After matched filtering, the received signal can be formulated as following matrix (13,14)

    X=AS+N (13)

    where the array manifold A is expressed as

    A=[at,r(θ1,ϕ1,r1),,at,r(θL,ϕL,rL)]=[b(θ1,ϕ1)a(θ1,ϕ1,r1),,b(θL,ϕL)a(θL,ϕL,rL)] (14)

    where at,r(θ,ϕ,r) is the joint transmitting-receiving steering vector, S=[s(t1),s(t2),,s(tK)]CL×K and NCMN×K denote the signal matrix and noise matrix, respectively, where noise follows the independent identical distribution, and denotes Kronecker product.

    a(θ,ϕ,r)=[1exp{j2π(2Δfrcf1dsinαc)}exp{j2π(M1)(2Δfrcf1dsinαc)}] (15)

    which can be expressed as

    a(θ,ϕ,r)=a(θ,ϕ)a(r) (16)

    where

    a(r)=[1,exp(j2π2Δfrc),,exp(j2π(M1)2Δfrc)]T (17)
    a(θ,ϕ)=[1,exp(j2πf1dsinαc),,exp[j2π(M1)f1dsinαc]]T (18)

    and represents Hadamard product operator.

    The CRLB can be obtained from the inverse of Fisher information matrix[27,28], which establishes a lower bound for the variance of any unbiased estimator. We employ the CRLB for conformal FDA-MIMO parameter estimation to evaluate the performance of some parameter estimation algorithms.

    The discrete signal model is

    x[k]=at,r(θ,ϕ,r)s[k]+N[k],k=1,2,,K (19)

    For the sake of simplification, we take at,r as the abbreviation of at,r(θ,ϕ,r).

    The Probability Distribution Function (PDF) of the signal model with K snapshots is

    p(x|θ,ϕ,r)=1(2πσ2n)K2exp(1σ2n(xat,rs)H(xat,rs)) (20)

    where x=[x(1),x(2),,x(K)] and s=[s(1),s(2),,s(K)].

    The CRLB matrix form of elevation angle, azimuth angle and range is given by Eq. (21), diagonal elements {Cθθ,Cϕϕ,Crr} represent CRLB of estimating elevation angle, azimuth angle and range, respectively.

    CRLB=[CθθCθϕCθrCϕθCϕϕCϕrCrθCrϕCrr]=FIM1=[F11F12F13F21F22F23F31F32F33] (21)

    The elements of Fisher matrix can be expressed as

    Fij=E[2ln(p(xθ,ϕ,r))xixj],i,j=1,2,3 (22)

    In the case of K snapshots, PDF can be rewritten as

    p(x|θ,ϕ,r)=Cexp{1σ2nKn=1(x[k]at,rs[k])H(x[k]at,rs[k])} (23)

    where C is a constant, natural logarithm of Eq. (23) is

    ln(p(x|θ,ϕ,r))=ln(C)1σ2nKk=1(x[k]at,rs[k])H(x[k]at,rs[k]) (24)

    where ln() represents the logarithm operator. The first entry of Fisher matrix can be expressed as

    F11=E[2ln(p(x|θ,ϕ,r))θ2] (25)

    Correspondingly, the first derivative of natural logarithm is given by

    ln(p(x|θ,ϕ,r))θ=1σ2nKk=1(xH[k]at,rθs[k]aHt,rθs[k]x[k]+aHt,rθat,rs2[n]a+aHt,rat,rθs2[n]) (26)

    Then we can obtain the second derivative of

    2ln(p(x|θ,ϕ,r))θ2=1σ2nKk=1(x[k]H2at,rθ2s[k]2aHt,rθ2s(k)x[k]+2aHt,rθ2at,rs[k]2+aHt,rθat,rθs[k]2+aHt,rθat,rθs[k]2+aHt,r2at,rθ2s[k]2) (27)

    And then we have

    Kk=1x[k]=Kk=1at,rs[k]+N[k]=at,r(θ,ϕ,r)Kk=1s[k] (28)

    and

    Kk=1s2[k]=Kvar(s[k])=Kσ2s (29)

    where var() is a symbol of variance. Therefore, the PDF after quadratic derivation can be written as

    E[2ln(p(x|θ,ϕ,r))θ2]=Kσ2sσ2n(aHt,rθat,rθ+aHt,rθat,rθ)=2Kσ2sσ2nat,rθ2 (30)

    where denotes 2-norm. Similarly, the other elements of the Fisher matrix can also be derived in the similar way, so the Fisher matrix can be expressed as

    CRLB1=FIM=2Kσ2sσ2n[aθ2FIM12FIM13FIM21aϕ2FIM23FIM31FIM32ar2] (31)

    where

    FIM12=12[aHt,rθat,rϕ+aHt,rϕat,rθ],
    FIM13=12[aHt,rθat,rr+aHt,rrat,rθ],
    FIM21=12[aHt,rϕat,rθ+aHt,rθat,rϕ],
    FIM23=12[aHt,rϕat,rr+aHt,rrat,rϕ],
    FIM31=12[aHt,rrat,rθ+aHt,rθat,rr],
    FIM32=12[aHt,rrat,rϕ+aHt,rϕat,rr],
    σ2sσ2n=SNR

    Finally, the CRLB of conformal FDA-MIMO can be calculated by the inverse of Fisher matrix.

    The covariance matrix of the conformal FDA-MIMO receiving signal can be written as

    RX=ARsAH+σ2IMN (32)

    where Rs represents the covariance matrix of transmitting signal, IMN denotes MN dimensional identity matrix. For independent target signal and noise, RX can be decomposed as

    RX=USΛSUHS+UnΛnUHn (33)

    The traditional MUSIC algorithm is utilized to estimate the three-dimensional parameters {θ,ϕ,r}, MUSIC spectrum can be expressed as

    PMUSIC(θ,ϕ,r)=1aHt,r(θ,ϕ,r)UnUHnat,r(θ,ϕ,r) (34)

    The target location can be obtained by mapping the peak indexes of MUSIC spectrum.

    Traditional MUSIC parameter estimation algorithm is realized by 3D parameter search, which has good performance at the cost of high computational complexity. When the angular scan interval is less than 0.1°, the running time of single Monte-Carlo simulation is in hours, which is unpracticable for us to analysis conformal FDA-MIMO estimation performance by hundreds of simulations.

    In order to reduce the computation complexity of the parameter estimation algorithm for conformal FDA-MIMO, we propose a RD-MUSIC algorithm, which has a significant increase in computing speed at the cost of little estimation performance loss.

    At first, we define

    V(θ,ϕ,r)=aHt,r(θ,ϕ,r)HUnUHnat,r(θ,ϕ,r)=[b(θ,ϕ)a(θ,ϕ,r)]HUnUHn[b(θ,ϕ)a(θ,ϕ,r)] (35)

    Eq. (35) can be further calculated by

    V(θ,ϕ,r)=aH(θ,ϕ,r)[b(θ,ϕ)IM]H×UnUHn[b(θ,ϕ)IM]a(θ,ϕ,r)=aH(θ,ϕ,r)Q(θ,ϕ)a(θ,ϕ,r) (36)

    where Q(θ,ϕ)=[b(θ,ϕ)IM]HUnUHn[b(θ,ϕ)IM],

    Eq. (36) can be transformed into a quadratic programming problem. To avoid a(θ,ϕ,r)=0M, we add a constraint eH1a(θ,ϕ,r)=1, where e1 denotes unit vector. As a result, the quadratic programming problem can be redefined as

    {min (37)

    The penalty function can be constructed as

    \begin{split} L(\theta ,\phi ,r) =& {{\boldsymbol{a}}^{\rm{H}}}(\theta ,\phi ,r){\boldsymbol{Q}}(\theta ,\phi ){\boldsymbol{a}}(\theta ,\phi ,r) \\ & - \mu \left({\boldsymbol{e}}_1^{\text{H}}{\boldsymbol{a}}(\theta ,\phi ,r) - 1\right) \\ \end{split} (38)

    where \mu is a constant, because {\boldsymbol{a}}\left( {\theta ,\phi ,r} \right) = {\boldsymbol{a}}\left( {\theta ,\phi } \right) \odot {\boldsymbol{a}}\left( r \right), so we can obtain

    \begin{split} \frac{{\partial L(\theta ,\phi ,r)}}{{\partial {\boldsymbol{a}}(r)}} =& 2{\rm{diag}}\left\{ {{\boldsymbol{a}}(\theta ,\phi )} \right\}{\boldsymbol{Q}}(\theta ,\phi ){\boldsymbol{a}}(\theta ,\phi ,r) \\ & - \mu {\rm{diag}}\left\{ {{\boldsymbol{a}}(\theta ,\phi )} \right\}{\boldsymbol{e}}_{\boldsymbol{1}}^{} \end{split} (39)

    where {\rm{diag}}( \cdot ) denotes diagonalization.

    And then let \dfrac{{\partial L(\theta ,\phi ,r)}}{{\partial {\boldsymbol{a}}(r)}} = 0, we can get

    {\boldsymbol{a}}\left( r \right) = \varsigma {{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){\boldsymbol{e}}_1^{}./{\boldsymbol{a}}(\theta ,\phi ) (40)

    where \varsigma is a constant, ./ denotes the division of the corresponding elements, which is opposite of Hadamard product. Substituting the constraint {\boldsymbol{e}}_1^{\rm{H}}{\boldsymbol{a}}(\theta ,\phi ,r) = 1 into {\boldsymbol{a}}\left( r \right) , we can obtain \varsigma = 1/({\boldsymbol{e}}_1^{\rm{H}}{{\boldsymbol{Q}}^{ - 1}} \cdot(\theta ,\phi ){\boldsymbol{e}}_1 ), then {\boldsymbol{a}}\left( r \right) can be expressed as

    {\boldsymbol{a}}\left( r \right) = \frac{{{{\boldsymbol{Q}}^{ - 1}}\left( {\theta ,\phi } \right){{\boldsymbol{e}}_1}}}{{{\boldsymbol{e}}_1^{\rm{H}}{{\boldsymbol{Q}}^{ - 1}}\left( {\theta ,\phi } \right){{\boldsymbol{e}}_1}}}./{\boldsymbol{a}}\left( {\theta ,\phi } \right) (41)

    Substituting {\boldsymbol{a}}\left( r \right) into Eq. (37), the target azimuths and elevations can be estimated by searching two-dimensional azimuth-elevation spectrum,

    \begin{split} \hfill \lt \hat \theta ,\hat \phi \gt =& {\text{arg}}\mathop {\min }\limits_{\theta ,\phi } \frac{1}{{{\boldsymbol{e}}_1^{\text{H}}{{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){{\boldsymbol{e}}_{\boldsymbol{1}}}}} \\ =& {\text{arg}}\mathop {\max }\limits_{\theta ,\phi } {\boldsymbol{e}}_1^{\text{H}}{{\boldsymbol{Q}}^{ - 1}}(\theta ,\phi ){{\boldsymbol{e}}_{\boldsymbol{1}}} \end{split} (42)

    Given azimuth-elevation estimations obtained by mapping the L peak points, the range information can be obtained by searching range-dimensional spectrum,

    P\left({\hat \theta _i},{\hat \phi _i},r\right){\text{ }} = \frac{1}{{{\boldsymbol{a}}_{t,r}^{\rm{H}}\left({{\hat \theta }_i},{{\hat \phi }_i},r\right){{\boldsymbol{U}}_n}{\boldsymbol{U}}_n^{\rm{H}}{{\boldsymbol{a}}_{t,r}}\left({{\hat \theta }_i},{{\hat \phi }_i},r\right)}} (43)

    For conformal array, different array layouts produce different element patterns. We select the semi conical conformal array which is shown in Fig. 2 as the receiving array for the following simulation.

    Figure  2.  Conformal FDA-MIMO semi conical receiving array

    The simulation parameters are provided as follows: M = 10,N = 7,{f_1} = 10\;{\rm{GHz}},\Delta f = 3\;{\rm{kHz}}, d = \lambda /2 = c/2{f_1} and c = 3 \times {10^8}\;{\rm{m}}/{\rm{s}}.

    We first analyze the computational complexity of the algorithms in respect of the calculation of covariance matrix, the eigenvalue decomposition of the matrix and the spectral search. The main complexity of the MUISC algorithm and our proposed RD-MUISC algorithm are respectively as

    O\left(KL{({MN})^2} + 4/3{({MN})^{\text{3}}}{{ + L}}{\eta _1}{\eta _2}{\eta _3}{({MN})^2} \right) (44)
    O\left(KL{({MN})^2} + 4/3{({MN})^{\text{3}}}{{ + L}}{\eta _1}{\eta _2}{({MN})^2} + L{\eta _3}{({MN})^2}\right) (45)

    Where K and L denote snapshot number and signal sources number, {\eta _1},{\eta _2} and {\eta _3} represent search number in three-dimensional parameter \theta ,\phi ,r , respectively.

    From Eq. (44) and Eq. (45), we can see that the main complexity reduction of the RD-MUSIC algorithm lies in the calculation of the spectral search function. With the increase of the search accuracy, the complexity reduction is more significant.

    The computational complexity of algorithms is compared in Fig. 3. It can be seen from Fig. 3 that the difference of computational complexity between the two algorithms gradually increases with the increase of search accuracy. In the case of high accuracy, the computational efficiency of RD-MUSIC algorithm can reach more than {10^3} times of the traditional MUSIC algorithm. The simulation results show that RD-MUSIC algorithm has advantage in computing efficiency for conformal FDA-MIMO.

    Figure  3.  Comparison of computational complexity under different scan spacing

    In order to illustrate the effectiveness of the RD-MUSIC algorithm for a single target which is located at ({30^\circ },{20^\circ },10\;{\rm{km}}), we first give the parameter estimation probability of success with 1000 times Monte Carlo simulation, as shown in Fig. 4, the criterion of successful estimation is defined as the absolute difference between the estimation value and the actual value is less than a designed threshold \varGamma . More specifically, the criterion is \left| {\hat \theta - \theta } \right| < {\varGamma _\theta },\left| {\hat \phi - \phi } \right| < {\varGamma _\phi },\left| {\hat r - r} \right| < {\varGamma _r} , and suppose {\varGamma _\theta } = \varGamma \times {1^\circ },{\varGamma _\phi } = \varGamma \times {1^\circ },{\varGamma _r} = \varGamma \times 100\;{\rm{m}}, in the simulation, as well as the search paces are set as \left[ {{{0.05}^\circ },{{0.05}^\circ },0.05\;{\rm{km}}} \right], respectively. From Fig. 4, we can see that the probability of success gets higher as \varGamma gets bigger, which is consistent with expected.

    Figure  4.  The parameter estimation probability of RD-MUSIC algorithm with different thresholds

    Then, we consider the single target parameter estimation performance, Fig. 5 shows the RMSE of different algorithms with the increase of SNR under 200 snapshots condition, and Fig. 6 demonstrates the RMSE of different algorithms with the increase of snapshot number when SNR=0 dB. As shown in Fig. 5 and Fig. 6, the RMSEs of conformal FDA-MIMO gradually descend with the increasing of SNRs and snapshots, respectively. At the same time, the performance of traditional algorithm is slightly higher than RD-MUSIC algorithm. When the number of snapshots is more than 200, the difference of RMSEs is less than {10^{ - 1}} . Therefore, the performance loss of RD-MUSIC algorithm is acceptable compared with the improved computational speed. Note that, here we set 100 times Monte Carlo simulation to avoid running too long.

    Figure  5.  The RMSE versus snapshot for single target case
    Figure  6.  The RMSE versus SNR for two targets case

    Without loss of generality, we finally consider two targets which are located at ({30^\circ },{20^\circ }, 10\;{\rm{km}}) and ({30^\circ },{20^\circ },12\;{\rm{km}}), respectively, the remaining parameters are the same as single target case. Fig. 7 and Fig. 8 respectively show the RMSE of different algorithms with the increase of SNR and snapshot number in the case of two targets.

    Figure  7.  The RMSE versus snapshot for two targets case
    Figure  8.  The RMSE versus snapshot for two targets case

    It can be seen from Fig. 7 that the RMSE curve trend of angle estimation is consistent with that of single target case. The performance of traditional MUSIC algorithm is slightly better than that of RD-MUSIC algorithm. In the range dimension, the performance of traditional algorithm hardly changes with SNR, and RD-MUSIC algorithm is obviously better than traditional MUSIC algorithm. The proposed RD-MUSIC algorithm first estimates the angles, and then estimates the multiple peaks from range-dimensional spectrum, which avoids the ambiguity in the three-dimensional spectral search. Therefore, the RD-MUSIC algorithm has better range resolution for multiple targets estimation.

    In this paper, a conformal FDA-MIMO radar is first established, and the corresponding signal receiving mathematical model is formulated. In order to avoid the computational complexity caused by three-dimensional parameter search of MUSIC algorithm, we propose a RD-MUSIC algorithm by solving a quadratic programming problem. Simulation results show that the RD-MUSIC algorithm has comparative angle estimation performance with that of traditional MUSIC algorithm while greatly reducing the computation time. And the RD-MUSIC algorithm has better range estimation performance for multiple targets.

  • 图  1  SAL侧视观测几何

    Figure  1.  Side-looking observation geometry of SAL

    图  2  SAL视场中目标信号方向,距离和时间关系

    Figure  2.  The relationship among object signal direction, range and time in the view field of SAL

    图  3  光纤准直器几何结构

    Figure  3.  Geometry structure of fiber collimator

    图  4  基于相控阵的宽视场信号收入光纤示意图

    Figure  4.  Diagram of introducing wide view field signal into fiber based on phased array

    图  5  1维纳米光波导阵+空间高阶相位形成器件的宽视场信号收入光纤示意图

    Figure  5.  Diagram of introducing wide view field signal into fiber based on nanophotonic waveguide array and space higher-order phaser

    图  6  光纤准直器+空间高阶相位形成器件的宽视场信号收入光纤示意图

    Figure  6.  Diagram of introducing wide view field signal into fiber based on fiber collimator and space higher-order phaser

    图  7  理想2阶相位和对应的波束方向图展宽情况

    Figure  7.  Desired second-order phase and the related broading beam pattern

    图  8  8值化2阶相位和对应的波束方向图展宽情况

    Figure  8.  Second-order phase with 8 quantization bits and the related broading beam pattern

    图  9  16值化2阶相位和对应的波束方向图展宽情况

    Figure  9.  Second-order phase with 16 quantization bits and the related broading beam pattern

    图  10  SAL主镜和宽视场馈源都采用二元光学器件的衍射光学系统示意图

    Figure  10.  Diagram of diffractive optical system in which the binary optical element is used both on the feeder and primary mirror

    图  11  衍射主镜需形成的移相量、折叠相位曲线和波束方向图

    Figure  11.  The phase, folded phase and beam pattern of the diffractive primary mirror

    图  12  8值化主镜相位和波束方向图

    Figure  12.  The primary mirror phase with 8 quantization bits and the related beam pattern

    图  13  机载SAL扫描方式(通过扫描将距离向观测幅宽扩大2倍示意图)

    Figure  13.  Scanning model of airborne SAL (Double the swath through scanning)

    图  14  机载SAL条带成像模式扫描顺序和对应的波束覆盖范围示意图

    Figure  14.  Scanning order of airborne SAL strip-map imaging model and related beam scope

    表  1  机载SAL条带成像模式扫描参数

    Table  1.   Scanning parameters of airborne SAL with strip-map imaging model

    序号 雷达位置 扫描时间(s) 顺轨扫描范围(°) 顺轨扫描角速度(°/s) 交轨扫描范围(°) 交轨扫描角速度(°/s)
    1 0 \to 1 0\to 2.7\to - 0.6 6.0 - 5\to - 3 2
    2 1 \to 2 - 0.6\to 1.5\to - 1.2 4.8 - 3\to - 1 2
    3 2 \to 3 - 1.2\to 0.3\to - 1.8 3.6 - 1\to 1 2
    4 3 \to 4 - 1.8\to - 0.9\to - 2.4 2.4 1\to 3 2
    5 4 \to 6 - 2.4\to - 2.1\to 2.6 2.5 3\to 5\to 3 2
    6 6 \to 7 2.6\to - 2.7\to 1.8 9.8 3\to 1 2
    7 7 \to 8 1.8\to - 2.7\to 1.2 8.4 1\to - 1 2
    8 8 \to 9 1.2\to - 2.7\to 0.6 6.8 - 1\to - 3 2
    9 9 \to 10 0.6\to - 2.7\to 0 6.0 - 3\to - 5 2
    下载: 导出CSV

    表  2  作用距离5 km机载SAL系统参数

    Table  2.   System parameters of airborne SAL with 5 km detection range

    参数 数值 参数 数值
    飞行高度 H(km) 2.5 飞行速度 v(m/s) 50
    平均入射角 \theta (°) 60 脉冲重复频率(kHz) 50
    顺轨/交轨波束宽度 {\theta _{\rm{a}}}, {\theta _{\rm{c}}}(mrad) 0.3, 35.0 目标散射系数 {\sigma _0} 0.1
    地距向瞬时幅宽 \Delta R(m) 350 距离/方位分辨率 {\rho _{\rm{r}}}, {\rho _{\rm{a}}}(m) 0.05, 0.05
    顺轨/交轨扫描范围 \Delta {\theta _{\rm{c}}}, \Delta {\theta _{\rm{a}}}(°) \pm 3, \pm 5 双程大气损耗 {\eta _{{\rm{ato}}}} 0.4
    最近/最远斜距 R(km) 4.35, 5.92 接收望远镜口径 D(mm) 300
    顺轨/交轨扫描角速度大小 {\omega _{\rm{a}}}, {\omega _{\rm{c}}} 表1所示 发射光学系统损耗 {\eta _{\rm{t}}} 0.9
    顺轨/交轨扫描周期 {T_{\rm{a}}}, {T_{\rm{c}}} 表1所示 接收光学系统损耗 {\eta _{\rm{r}}} 0.8
    地距向扫描幅宽(km) 1.5 匹配损耗 {\eta _{\rm{m}}} 0.5
    激光波长 \lambda (μm) 1.55 其他光学损耗 {\eta _{{\rm{oth}}}} 0.8
    发射峰值功率 {P_{\rm{t}}}(W) 400 量子效率 {\eta _{\rm{D}}} 0.5
    脉冲宽度 {T_{\rm{p}}}(μs) 5 电子学系统损耗 {\eta _{{\rm{ele}}}} 0.5
    信号带宽 {B_{\rm{r}}}(GHz) 4 电子学噪声系数 {F_{\rm{n}}}(dB) 3
    目标后向散射立体角 \varOmega {\rm{{{π}} }} 图像信噪比 {{\rm SNR}_{\min }}(条带模式)(dB) 10.3
    下载: 导出CSV

    表  3  作用距离10 km机载SAL系统参数

    Table  3.   System parameters of airborne SAL with 10 km detection range

    参数 数值 参数 数值
    飞行高度 H(km) 3.3 目标散射系数 {\sigma _0} 0.1
    入射角(°) 70 距离/方位分辨率 {\rho _{\rm{r}}}, {\rho _{\rm{a}}}(m) 0.05, 0.05
    顺轨/交轨波束宽度 {\theta _{\rm{a}}}, {\theta _{\rm{c}}}(mrad) 0.3, 35.0 双程大气损耗 {\eta _{{\rm{ato}}}} 0.25
    最近/最远斜距 R(km) 9.21, 10.13 接收望远镜口径 D(mm) 300
    地距向瞬时幅宽(km) 1 发射光学系统损耗 {\eta _{\rm{t}}} 0.9
    飞行速度 v(m/s) 50 接收光学系统损耗 {\eta _{\rm{r}}} 0.8
    激光波长 \lambda (μm) 1.55 匹配损耗 {\eta _{\rm{m}}} 0.5
    发射峰值功率 {P_{\rm{t}}}(W) 400 其他光学损耗 {\eta _{{\rm{oth}}}} 0.8
    脉冲宽度 {T_{\rm{p}}}(μs) 5 量子效率 {\eta _{\rm{D}}} 0.5
    脉冲重复频率(kHz) 50 电子学系统损耗 {\eta _{{\rm{ele}}}} 0.5
    信号带宽 {B_{\rm{r}}}(GHz) 4 电子学噪声系数 {F_{\rm{n}}}(dB) 3
    目标后向散射立体角 \varOmega {\rm{{{π}} }} 图像信噪比 {{\rm SNR}_{\min }}(滑动聚束模式)(dB) 10
    下载: 导出CSV
  • [1] Krause B W, Buck J, Ryan C, et al.. Synthetic aperture ladar flight demonstration[C]. Proceedings of 2011 Conference on Lasers and Electro-Optics, Baltimore, MD, USA, 2011.
    [2] 李道京, 张清娟, 刘波, 等. 机载合成孔径激光雷达关键技术和实现方案分析[J]. 雷达学报, 2013, 2(2): 143–151. DOI: 10.3724/SP.J.1300.2013.13021

    Li Dao-jing, Zhang Qing-juan, Liu Bo, et al. Key technology and implementation scheme analysis of air-borne synthetic aperture ladar[J]. Journal of Radars, 2013, 2(2): 143–151. DOI: 10.3724/SP.J.1300.2013.13021
    [3] Liu L R. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4): 579–599. DOI: 10.1364/AO.52.000579
    [4] Zhao Z L, Huang J Y, Wu S D, et al. Experimental demonstration of tri-aperture differential synthetic aperture ladar[J]. Optics Communications, 2017, 389: 181–188. DOI: 10.1016/j.optcom.2016.12.024
    [5] Li G Z, Wang N, Wang R, et al. Imaging method for airborne SAL data[J]. Electronics Letters, 2017, 53(5): 351–353. DOI: 10.1049/el.2016.4205
    [6] 卢智勇, 周煜, 孙建峰, 等. 机载直视合成孔径激光成像雷达外场及飞行实验[J]. 中国激光, 2017, 44(1): 0110001. DOI: 10.3788/CJL201744.0110001

    Lu Zhi-yong, Zhou Yu, Sun Jian-feng, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese Journal of Lasers, 2017, 44(1): 0110001. DOI: 10.3788/CJL201744.0110001
    [7] 李道京, 杜剑波, 马萌. 合成孔径激光雷达的研究现状与天基应用展望[C]. 钱学森实验室首届空间技术未来发展及应用学术会, 北京, 2014: 18–20.
    [8] 田芊, 廖延彪, 孙利群. 工程光学[M]. 北京: 清华大学出版社, 2006: 35–38.

    Tian Qian, Liao Yan-biao, and Sun Li-qun. Engineering Optics[M]. Beijing: Tsinghua University Press, 2006: 35–38.
    [9] 杜剑波, 李道京, 马萌, 等. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 0910003. DOI: 10.3788/CJL201643.0910003

    Du Jian-bo, Li Dao-jing, Ma Meng, et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese Journal of Lasers, 2016, 43(9): 0910003. DOI: 10.3788/CJL201643.0910003
    [10] 伍洋. 射电望远镜天线相控阵馈源技术研究[D]. [博士论文], 西安电子科技大学, 2013: 9–21.

    Wu Yang. Research on the phased array feed technology for the radio telescope[D]. [Ph.D. dissertation], Xidian University, 2013: 9–21.
    [11] Yaacobi A, Sun J, Moresco M, et al. Integrated phased array for wide-angle beam steering[J]. Optics Letters, 2014, 39(15): 4575–4578. DOI: 10.1364/OL.39.004575
    [12] Sun J, Timurdogan E, Yaacobi A, et al. Large-scale nanophotonic phased array[J]. Nature, 2013, 493(7431): 195–199. DOI: 10.1038/nature11727
    [13] 聂光. 光波导相控阵扫描光束优化方法研究[D]. [硕士论文], 西安电子科技大学, 2015: 25–33.

    Nie Guang. Study on beam optimization method for optical waveguide phased array[D]. [Master dissertation], Xidian University, 2015: 25–33.
    [14] 周高杯, 宋红军, 邓云凯. 基于波束空间的SAR阵列天线波束展宽方法[J]. 浙江大学学报(工学版), 2011, 45(12): 2252–2258. DOI: 10.3785/j.issn.1008-973X.2011.12.028

    Zhou Gao-bei, Song Hong-jun, and Deng Yun-kai. Investigation of SAR array antenna beam broadening based on beam pattern space[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(12): 2252–2258. DOI: 10.3785/j.issn.1008-973X.2011.12.028
    [15] 任波, 赵良波, 朱富国. 高分三号卫星C频段多极化有源相控阵天线系统设计[J]. 航天器工程, 2017, 26(6): 68–74. DOI: 10.3969/j.issn.1673-8748.2017.06.011

    Ren Bo, Zhao Liang-bo, and Zhu Fu-guo. Design of C-band multi-polarized active phased array antenna system for GF-3 satellite[J]. Spacecraft Engineering, 2017, 26(6): 68–74. DOI: 10.3969/j.issn.1673-8748.2017.06.011
    [16] 王帅, 孙华燕, 郭惠超, 等. APD阵列单脉冲三维成像激光雷达的发展与现状[J]. 激光与红外, 2017, 47(4): 389–398. DOI: 10.3969/j.issn.1001-5078.2017.04.001

    Wang Shuai, Sun Hua-yan, Guo Hui-chao, et al. Development and status of single pulse 3D imaging lidar based on APD array[J]. Laser&Infrared, 2017, 47(4): 389–398. DOI: 10.3969/j.issn.1001-5078.2017.04.001
    [17] Skolnik M I and Wang Jun. Radar Handbook[M]. Beijing: Electronic Industry Press, 2003: 9–10.
    [18] Pioneers in Photonic Technology. GAEA-2 10 megapixel phase only spatial light modulator (Reflective)[EB/OL]. https://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/?from=singlemessage&isappinstalled=0
    [19] 金国藩. 二元光学[M]. 北京: 国防工业出版社, 1998: 88–140.

    Jin Guo-fan. Binary Optics[M]. Beijing: National Defense Industry Press, 1998: 88–140.
    [20] 焦建超, 苏云, 王保华, 等. 地球静止轨道膜基衍射光学成像系统的发展与应用[J]. 国际太空, 2016(6): 49–55

    Jiao Jian-chao, Su Yun, Wang Bao-hua, et al. Development and application of GEO membrane based diffraction optical imaging system[J]. Space International, 2016(6): 49–55
    [21] 舒嵘, 徐之海. 激光雷达成像原理与运动误差补偿方法[M]. 北京: 科学出版社, 2014: 8–10.

    Shu Rong and Xu Zhihai. Imaging Thesis and Moving Comprehension of Ladar[M]. Beijing: Science Press, 2014: 8–10.
    [22] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 105–115.

    Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technology[M]. Beijing: Electronic Industry Press, 2015: 105–115.
    [23] Barber Z W and Dahl J R. Synthetic aperture ladar imaging demonstrations and information at very low return levels[J]. Applied Optics, 2014, 53(24): 5531–5537. DOI: 10.1364/AO.53.005531
  • 期刊类型引用(4)

    1. 葛津津,周浩,凌天庆. 一种应用于脉冲探地雷达前端的探测子系统. 电子测量技术. 2022(04): 27-32 . 百度学术
    2. 尹诗,郭伟. 用于探地雷达的超宽带天线设计与仿真. 电子设计工程. 2018(03): 98-102 . 百度学术
    3. 宋立伟,张超,洪涛. 冲击波载荷对平面阵列天线电性能的影响. 电子机械工程. 2017(04): 1-5+58 . 百度学术
    4. 尹德,叶盛波,刘晋伟,纪奕才,刘小军,方广有. 一种用于高速公路探地雷达的新型时域超宽带TEM喇叭天线. 雷达学报. 2017(06): 611-618 . 本站查看

    其他类型引用(6)

  • 加载中
图(14) / 表(3)
计量
  • 文章访问数: 3463
  • HTML全文浏览量: 1223
  • PDF下载量: 493
  • 被引次数: 10
出版历程
  • 收稿日期:  2018-02-10
  • 修回日期:  2018-03-26
  • 网络出版日期:  2018-04-28

目录

/

返回文章
返回