一种有效的机载双频干涉地形高程重建方法

刘华有 郑明洁 张衡 王宇 秦小芳

刘华有, 郑明洁, 张衡, 王宇, 秦小芳. 一种有效的机载双频干涉地形高程重建方法[J]. 雷达学报, 2018, 7(4): 475-486. doi: 10.12000/JR18013
引用本文: 刘华有, 郑明洁, 张衡, 王宇, 秦小芳. 一种有效的机载双频干涉地形高程重建方法[J]. 雷达学报, 2018, 7(4): 475-486. doi: 10.12000/JR18013
Liu Huayou, Zheng Mingjie, Zhang Heng, Wang Yu, Qin Xiaofang. An Effective Method of Airborne Dual-frequency Interferometric Terrain Elevation Reconstruction[J]. Journal of Radars, 2018, 7(4): 475-486. doi: 10.12000/JR18013
Citation: Liu Huayou, Zheng Mingjie, Zhang Heng, Wang Yu, Qin Xiaofang. An Effective Method of Airborne Dual-frequency Interferometric Terrain Elevation Reconstruction[J]. Journal of Radars, 2018, 7(4): 475-486. doi: 10.12000/JR18013

一种有效的机载双频干涉地形高程重建方法

doi: 10.12000/JR18013
基金项目: 国家重点研发计划(2017YFB0502700),航天十三五技术预研项目
详细信息
    作者简介:

    张衡:张   衡(1990–),男,山东人,中国科学院电子学研究所通信与信息系统专业博士研究生,研究方向为双基信号处理技术。E-mail: caszhmail@163.com

    通讯作者:

    张衡  caszhmail@163.com

An Effective Method of Airborne Dual-frequency Interferometric Terrain Elevation Reconstruction

Funds: National Key RD Program of China (2017YFB0502700), Aerospace 13th Five-Year Technology Pre-research Project
  • 摘要: 双频联合解缠不需要满足Iton假设,因此双频干涉可以有效地提取地形起伏较大区域的高程信息。针对目前双频干涉处理中高程重建精度低的问题,该文提出了一种有效的双频干涉SAR地形高程重建方法。该方法对常规处理流程中的关键步骤进行了改进,首先在不同波段配准之前采用非局部参数估计(NL-InSAR)技术对幅度图、相干系数、干涉相位进行精确估计,利用各个波段滤波后的幅度信息来实现不同波段的干涉相位的配准。然后采用聚类分析技术对联合解缠相位标记有效点和噪点,并利用这些有效点对联合解缠相位进行均值滤波。用于实验的机载实测数据包括同一场景的C波段和X波段主、辅SAR图像复数据,在针对实测数据处理中,该方法取得了较好的高程重建结果。

     

  • 图  1  改进的双频干涉处理流程图

    Figure  1.  Improved processes of dual-frequency interferometry

    图  2  3种配准方法配准后干涉条纹

    Figure  2.  Three interferometric phase images after registration

    图  3  两种去平地方法去平地之后的干涉图

    Figure  3.  The two flattened interferograms removed flat-Earth phase

    图  4  NL-InSAR滤波前后的干涉相位对比

    Figure  4.  Contrast between interferogram before filtering and filtered interferogram

    图  5  NL-InSAR滤波前后的SAR图像对比

    Figure  5.  Contrast between SAR image before filtering and filtered SAR image

    图  6  NL-InSAR滤波前后的相干系数

    Figure  6.  Contrast between coherence coefficient image before filtering and filtered coherence coefficient image

    图  7  NL-InSAR滤波前的不同波段幅度图对比

    Figure  7.  Comparison of different band amplitude graphs before NL-InSAR filtering

    图  8  NL-InSAR滤波后的不同波段幅度图对比

    Figure  8.  Comparison of different band amplitude graphs after NL-InSAR filtering

    图  9  NL-InSAR滤波前后的不同波段配准后的相关系数分布直方图对比

    Figure  9.  Comparison of the distribution histogram of correlation coefficients of different bands before and after NL-InSAR filtering

    图  10  对相同的仿真数据3种联合解缠算法的结果对比

    Figure  10.  The unwrapped phase images unwrapped by diffenent algorithms

    图  11  3种联合解缠算法解缠结果和原始相位的残差结果对比

    Figure  11.  The residual error images of different algorithms

    图  12  有效点和噪点标记流程图

    Figure  12.  Flow chart of effective point and noise marking

    图  13  模糊矢量和的分布直方图

    Figure  13.  Histogram distribution of ambiguity vector summation

    图  14  聚类均值滤波和传统均值滤波结果对比

    Figure  14.  Contrast between clustering Mean filter resultand traditional mean filter result

    图  15  A区域聚类均值滤波和传统均值滤波结果对比

    Figure  15.  Contrast between clustering mean filter result and traditional mean filter result in area A

    图  16  处理数据的场景

    Figure  16.  The scene of processing data

    图  17  不同波段配准之后的干涉图

    Figure  17.  Interferograms after registration of different bands

    图  18  单通道使用最小代价流解缠(MCF)结果

    Figure  18.  The single-channel phase unwrapped by MCF algorithm

    图  19  ML联合解缠结果

    Figure  19.  The dual-frequency phase unwrapped by ML algorithm

    图  20  聚类均值滤波后的TV-MAP联合解缠结果

    Figure  20.  The dual-frequency phase unwrapped by TV-MAP and cluster mean filter

    图  21  地形起伏比较大高架区域单波段和双频联合解缠结果对比

    Figure  21.  Contrast between single-band unwrapped phase and dual-frequency combined uwrapped phase

    图  22  双频联合根据轨道参数反演的DEM

    Figure  22.  The airborne double-frequency rebuilding DEM

  • [1] Rogers A E E and Ingalls R P. Venus: Mapping the surface reflectivity by radar interferometry[J]. Science, 1969, 165(3895): 797–799.
    [2] Van Zyl J J. The Shuttle Radar Topography Mission (SRTM): A breakthrough in remote sensing of topography[J]. Acta Astronautica, 2001, 48(5/12): 559–565.
    [3] Griffiths H. Interferometric synthetic aperture radar[J]. Electronics&Communication Engineering Journal, 1995, 7(6): 247–265.
    [4] 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. DOI: 10.12000/JR16089

    Wang Yanfei, Liu Chang, Zhan Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. DOI: 10.12000/JR16089
    [5] 侯丽英, 林赟, 洪文. 干涉圆迹SAR的目标三维重建方法研究[J]. 雷达学报, 2016, 5(5): 538–547. DOI: 10.12000/JR16009

    Hou Liying, Lin Yun, and Hong Wen. Three-dimensional reconstruction method study based on interferometric circular SAR[J]. Journal of Radars, 2016, 5(5): 538–547. DOI: 10.12000/JR16009
    [6] Ghiglia D C and Pritt M D. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software[M]. New York: Wiley, 1998
    [7] Xu W, Chang E C, Kwoh L K, et al.. Phase-unwrapping of SAR interferogram with multi-frequency or multi-baseline[C]. Proceedings of 1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 1994, 2: 730–732
    [8] Pascazio V and Schirinzi G. Estimation of terrain elevation by multifrequency interferometric wide band SAR data[J]. IEEE Signal Processing Letters, 2001, 8(1): 7–9. DOI: 10.1109/97.889635
    [9] Hoge W S. A subspace identification extension to the phase correlation method[MRI application][J].IEEE Transactions on Medical Imaging, 2003, 22(2): 277–280. DOI: 10.1109/TMI.2002.808359
    [10] Ferraiuolo G, Pascazio V, and Schirinzi G. Maximum a posteriori estimation of height profiles in InSAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 66–70. DOI: 10.1109/LGRS.2003.822882
    [11] Ferraioli G, Shabou A, Tupin F, et al. Multichannel phase unwrapping with graph cuts[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 562–566. DOI: 10.1109/LGRS.2009.2021165
    [12] Ferraiuolo G, Meglio F, Pascazio V, et al. DEM reconstruction accuracy in multichannel SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 191–201. DOI: 10.1109/TGRS.2008.2002644
    [13] Yu H W, Li Z F, and Bao Z. A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 478–487. DOI: 10.1109/TGRS.2010.2055569
    [14] Deledalle C A, Denis L, and Tupin F. NL-InSAR: Nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1441–1452. DOI: 10.1109/TGRS.2010.2076376
    [15] Yuan Z H, Deng Y K, Li F, et al. Multichannel InSAR DEM reconstruction through improved closed-form robust Chinese remainder theorem[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1314–1318. DOI: 10.1109/LGRS.2013.2238886
    [16] Zeng T, Liu T D, Ding Z G, et al. Phase unwrapping method based on multi-frequency InSAR in highly sloped terrain[J]. Electronics Letters, 2016, 52(12): 1058–1059. DOI: 10.1049/el.2015.3795
    [17] 斯奇, 王宇, 邓云凯, 等. 一种基于最大后验框架的聚类分析多基线干涉SAR高度重建算法[J]. 雷达学报, 2017, 6(6): 640–652. DOI: 10.12000/JR17043

    Si Qi, Wang Yu, Deng Yunkai, et al. A novel cluster-analysis algorithm based on MAP framework for multi-baseline InSAR height reconstruction[J]. Journal of Radars, 2017, 6(6): 640–652. DOI: 10.12000/JR17043
    [18] 李杭, 梁兴东, 张福博, 等. 基于高斯混合聚类的阵列干涉SAR三维成像[J]. 雷达学报, 2017, 6(6): 630–639. DOI: 10.12000/JR17020

    Li Hang, Liang Xingdong, Zhang Fubo, et al. 3D imaging for array InSAR based on Gaussian mixture model clustering[J]. Journal of Radars, 2017, 6(6): 630–639. DOI: 10.12000/JR17020
    [19] 赵耀, 邓云凯, 王宇, 等. 原始数据压缩对方位向多通道SAR系统影响研究[J]. 雷达学报, 2017, 6(4): 397–407. DOI: 10.12000/JR17030

    Zhao Yao, Deng Yunkai, Wang Yu, et al. Study of effect of raw data compression on azimuth multi-channel SAR system[J]. Journal of Radars, 2017, 6(4): 397–407. DOI: 10.12000/JR17030
    [20] 尤红建, 胡岩峰. SAR和光学图像精配准技术的研究[J]. 雷达学报, 2014, 3(1): 78–84. DOI: 10.3724/SP.J.1300.2014.13154

    You Hong-jian and Hu Yan-feng. Investigation on fine registration for SAR and optical image[J]. Journal of Radars, 2014, 3(1): 78–84. DOI: 10.3724/SP.J.1300.2014.13154
    [21] 刘钰菲. InSAR图像配准算法研究[D]. [硕士论文], 西安电子科技大学, 2011

    Liu Yu-fei. Research on image registration for InSAR system[D]. [Master dissertation], Xidian University, 2011
    [22] 袁志辉. 多通道干涉SAR关键技术研究[D]. [博士论文], 中国科学院大学, 2013

    Yuan Zhi-hui. Study on the key techniques of multichannel interferometric synthetic aperture radar[D]. [Ph.D. dissertation], The University of Chinese Academy of Sciences, 2013
  • 加载中
图(22)
计量
  • 文章访问数:  2466
  • HTML全文浏览量:  596
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-06
  • 修回日期:  2018-03-26
  • 网络出版日期:  2018-08-28

目录

    /

    返回文章
    返回