太赫兹信息超材料与超表面

刘峻峰 刘硕 傅晓建 崔铁军

刘峻峰, 刘硕, 傅晓建, 崔铁军. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46-55. doi: 10.12000/JR17100
引用本文: 刘峻峰, 刘硕, 傅晓建, 崔铁军. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46-55. doi: 10.12000/JR17100
Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100
Citation: Liu Junfeng, Liu Shuo, Fu Xiaojian, Cui Tiejun. Terahertz Information Metamaterials and Metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55. doi: 10.12000/JR17100

太赫兹信息超材料与超表面

doi: 10.12000/JR17100
基金项目: 国家重大仪器专项(36-10-1315), 国家自然科学基金(61302020, 61631007, 61571117, 61501112, 61501117, 61522106, 61722106, 61701107)
详细信息
    作者简介:

    刘峻峰(1990–),男,山东泰安人,在读博士,2012年于电子科技大学获得学士学位,研究方向为新型人工电磁材料。E-mail: ihrton@163.com

    刘 硕(1988–),男,河北赞皇人,博士。2017年于东南大学获得博士学位,现于英国伯明翰大学物理与天文学学院做博士后研究工作。主要研究方向为新型人工电磁材料。E-mail: liushuo.china@qq.com

    傅晓建(1986–),男,浙江龙游人,博士。2009年于浙江大学获得工学学士学位,2014年于清华大学获得工学博士学位,目前研究方向为新型人工电磁材料及太赫兹电磁材料与器件。E-mail: fuxj@seu.edu.cn

    崔铁军(1965–),男,河北滦平人,博士,教授。1987年、1990年、1993年于西安电子科技大学分别获得学士、硕士、博士学位,现任东南大学信息科学与工程学院教授,博士生导师。主要从事计算电磁学和新型人工电磁材料方面的研究。E-mail: tjcui@seu.edu.cn

    通讯作者:

    崔铁军   tjcui@seu.edu.cn

  • 中图分类号: O441.4

Terahertz Information Metamaterials and Metasurfaces

Funds: The National S&T Major Project (36-10-1315), The National Natural Science Foundation of China (61302020, 61631007, 61571117, 61501112, 61501117, 61522106, 61722106, 61701107)
  • 摘要: 该文对信息超材料,包括数字超材料、编码超材料、以及可编程超材料的研究进展及其在太赫兹领域的应用进行了综述,从原理分析、数值仿真、样品制备、实际应用等多个角度介绍了信息超材料对电磁波全面而灵活的调控能力,着重探讨了编码超材料在太赫兹领域的发展以及应用,最后阐述了现场可编程超材料的原理及其在构建新型成像系统、新概念雷达中的应用。信息超材料与超表面对太赫兹波束的灵活调控可用于制作波束分离、低雷达散射截面等多种功能器件,为太赫兹频段电磁波的实时调控开辟了新的途径。

     

  • 图  1  基于广义斯涅耳定律的的电磁超表面[2]

    Figure  1.  Metasurface based on generalized reflection and refraction laws[2]

    图  2  反射型的编码超表面基本单元[11]

    Figure  2.  The Metamaterials particle for realizing the coding metasurface[11]

    图  3  反射型的编码超表面以及散射方向图[11]

    Figure  3.  The coding metasurface and reflected directivity pattern[11]

    图  4  反射型的编码超表面及其单元结构[16]

    Figure  4.  Coding metasurface and Minkowski coding particle[16]

    图  5  反射型的编码超表面单元的设计[16]

    Figure  5.  The design of Minkowski coding particles of metasurface[16]

    图  6  具有金属背板的太赫兹低散射表面加工流程及样品部分照片[16]

    Figure  6.  The fabrication process for the coding metasurface and part of the fabricated sample[16]

    图  7  基于半导体材料的可调控太赫兹超材料结构[22]

    Figure  7.  The controllable THz metamaterails based on semiconductor[22]

    图  8  数字超材料单元结构以及相位曲线[11]

    Figure  8.  The metamaterial particle for realizing the digital metasurface and the corresponding phase responses[11]

    图  9  由可编程超表面生成动态全息成像的示意图[23]

    Figure  9.  Dynamic holographic imaging based on programmable metasurface[23]

    图  10  由现场可编程超表面实现的新概念雷达系统[11]

    Figure  10.  The proposed new concept radar systems based programmable metasurface[11]

    图  11  (a)–(d)现场可编程超表面在不同编码序列下的散射场仿真结果,其中(a)对应的编码序列为“000000”,(b)对应的编码序列为“111111”,(c)对应的编码序列为“010101”,(d)对应的编码序列为“001011”,(e)–(h)为与之对应的测试结果[11]

    Figure  11.  Numerical simulation results of scattering patterns for digital metasurface under different coding sequences: (a) 000000, (b) 111111, (c) 010101 and (d) 001011. (e)–(h) Experimental results of scattering patterns for the digital metasurface under different coding sequences: (e) 000000, (f) 111111, (g) 010101 and (h) 001011[11]

  • [1] Smith D R, Schultz S, Markoš P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients[J]. Physical Review B, 2002, 65(19): 195104. DOI: 10.1103/PhysRevB.65.195104
    [2] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. DOI: 10.1126/science.1210713
    [3] Pfeiffer C and Grbic A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. DOI: 10.1103/PhysRevLett.110.197401
    [4] Valentine J, Zhang S, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376–379. DOI: 10.1038/nature07247
    [5] Shen X P, Cui T J, Martin-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 40–45. DOI: 10.1073/pnas.1210417110
    [6] Ma H F, Shen X P, Cheng Q, et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons[J]. Laser&Photonics Reviews, 2014, 8(1): 146–151.
    [7] Zhang H C, Zhang Q, Liu J F, et al. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies[J]. Scientific Reports, 2016, 6: 23396. DOI: 10.1038/srep23396
    [8] Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.
    [9] Lin J, Mueller J B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331–334. DOI: 10.1126/science.1233746
    [10] Sun S L, He Q, Xiao S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. DOI: 10.1038/nmat3292
    [11] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science&Applications, 2014, 3(10): e218.
    [12] Liu S, Cui T J, Xu Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science&Applications, 2016, 5(5): e16076.
    [13] Liu S, Zhang H C, Zhang L, et al. Full-state controls of terahertz waves using tensor coding metasurfaces[J]. ACS Applied Materials&Interfaces, 2017, 9(25): 21503–21514.
    [14] Wu H T, Liu S, Wan X, et al. Controlling energy radiations of electromagnetic waves via frequency coding metamaterials[J]. Advanced Science, 2017, 4(9): 1700098. DOI: 10.1002/advs.201700098
    [15] Liu S, Cui T J, Zhang L, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3(10): 1600156. DOI: 10.1002/advs.201600156
    [16] Gao L H, Cheng Q, Yang J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science&Applications, 2015, 4(9): e324.
    [17] Hashemi M R M, Yang S H, Wang T Y, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6: 35439. DOI: 10.1038/srep35439
    [18] Scherger B, Reuter M, Scheller M, et al. Discrete terahertz beam steering with an electrically controlled liquid crystal device[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(11): 1117–1122. DOI: 10.1007/s10762-012-9927-5
    [19] Smith B C, Whitaker J F, and Rand S C. Steerable THz pulses from thin emitters via optical pulse-front tilt[J]. Optics Express, 2016, 24(18): 20755–20762. DOI: 10.1364/OE.24.020755
    [20] Monnai Y, Altmann K, Jansen C, et al. Terahertz beam steering and variable focusing using programmable diffraction gratings[J]. Optics Express, 2013, 21(2): 2347–2354. DOI: 10.1364/OE.21.002347
    [21] Shrekenhamer D, Montoya J, Krishna S, et al. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12): 905–909. DOI: 10.1002/adom.v1.12
    [22] Chen H T, Padilla W J, Zide J M, et al. Active terahertz metamaterial devices[J].Nature, 2006, 444(7119): 597–600. DOI: 10.1038/nature05343
    [23] Li L L, Cui T J, Ji W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8: 197. DOI: 10.1038/s41467-017-00164-9
    [24] Wan X, Qi M Q, Chen T Y, et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 2016, 6: 20663. DOI: 10.1038/srep20663
  • 加载中
图(11)
计量
  • 文章访问数:  4885
  • HTML全文浏览量:  1483
  • PDF下载量:  1287
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-01-14
  • 网络出版日期:  2018-02-28

目录

    /

    返回文章
    返回