Circulation Retrieval of Wake Vortices under Rainy Conditions with an X Band Radar

Jean-Yves Schneider Gilles Beauquet Frédéric Barbaresco

Jean-Yves Schneider, Gilles Beauquet, Frédéric Barbaresco. Circulation Retrieval of Wake Vortices under Rainy Conditions with an X Band Radar[J]. Journal of Radars, 2017, 6(6): 673-699. doi: 10.12000/JR17070
Citation: Jean-Yves Schneider, Gilles Beauquet, Frédéric Barbaresco. Circulation Retrieval of Wake Vortices under Rainy Conditions with an X Band Radar[J]. Journal of Radars, 2017, 6(6): 673-699. doi: 10.12000/JR17070

Circulation Retrieval of Wake Vortices under Rainy Conditions with an X Band Radar

DOI: 10.12000/JR17070
More Information
    Author Bio:

    Jean-Yves Schneider, Engineer specialist in Advanced Studies

    Dr Gilles Beauquet, Engineer specialist in Electromagnetic modelling

    Frédéric Barbaresco, Thales senior expert in the processing & computing domain for Thales Land & Air Systems

    Corresponding author: Jean-Yves Schneider. E-mail: jean-yves-j.schneider@thalesgroup.com
  • Figure  1.  THALES X-band RADAR

    Figure  2.  Location of THALES X-band RADAR

    Figure  3.  RADAR scanning domain (horizontal)

    Figure  4.  RADAR scanning domain (vertical)

    Figure  5.  Global architecture of RADAR system deployed in PARIS-CDG

    Figure  6.  X-band RADAR modes available

    Figure  7.  Notations used to define a scenario

    Figure  8.  Mean Doppler velocity as a function of range-Case of A319-Beam elevation 5°

    Figure  9.  Comparison between TL(max) and its fitted function-All beams

    Figure  10.  Comparison between TR(min) and its fitted function- All beams

    Figure  11.  Block diagram of wake vortex processing

    Figure  12.  Range evaluation-A380-RADAR beam elevation 5°

    Figure  13.  Elevation evaluation-A380-RADAR beam elevation 5°

    Figure  14.  Circulation evaluation-A380-RADAR beam elevation 5°

    Figure  15.  Range/Doppler map-Impact of ground clutter

    Figure  16.  Pre-processing-A342-2015/01/28 05:22-All beams-scan 2

    Figure  17.  Vmin & Vmax-A342-2015/01/28 05:22-All beams

    Figure  18.  DL & DR-A342-2015/01/28 05:22-All beams

    Figure  19.  Data availability-Threshold 27R landing recordings

    Figure  20.  Histogram of instantaneous wind direction (MET data)

    Figure  21.  Histogram of instantaneous wind speed (mean=5.4 m/s, MET data)

    Figure  22.  Durations of vortices for all landing aircraft per category-Threshold 27R

    Figure  23.  Coefficient a versus b0 (all categories)-Threshold 27R

    Figure  24.  Histogram of measured Vmin & Vmax (all categories)-Threshold 27R

    Table  1.   Statistics about observed landing aircrafts

    Number of recordings
    (Any SNR)
    category M: category H: category S: Number of recordings in presence
    of rain (SNRe≥5 dB)
    category M: category H: category S:
    26924 18411 7380 1131 7936 5403 2193 340
    下载: 导出CSV

    Table  2.   Calculation of detection probability 1/2

    WTC (Wake
    Turbulence Category)
    SNR > 5 dB SNR > 10 dB
    detected/total detected/total
    Cat. M 1734/2332 (74.4%) 1362/1803 (75.5%)
    Cat. H 740/820 (90.2%) 573/632 (90.7%)
    Cat. S 154/169 (91.1%) 103/113 (91.2%)
    下载: 导出CSV

    Table  3.   Calculation of detection probability 2/2

    WTC SNR > 15 dB SNR > 20 dB
    detected/total detected/total
    Cat. M 1001/1282 (78.1%) 472/632 (74.7%)
    Cat. H 394/436 (90.4%) 211/226 (93.4%)
    Cat. S 64/70 (91.4%) 27/30 (90.0%)
    下载: 导出CSV

    Table  4.   Statistical results

    Category Npoints $\nu $avg (m/s) $\sigma $avg (m/s) $\nu $mode (m/s)
    All 2639 2,10 0,89 1,75
    M 1879 1,94 0,79 1,75
    H 638 2,49 0,95 1,75
    S 2639 2,10 0,89 1,75
    下载: 导出CSV
  • [1] 12.2.2, Preliminary System Requirements of Runway Wake Vortex Detection, Prediction and decision support tools, D1,00.01.00, 11/07/2010.
    [2] 12.2.2, Preliminary System Architecture of Runway Wake Vortex Detection, Prediction and Decision Support Tools, D2,00.01.00, 27/10/2010.
    [3] 12.2.2, Recommendations on sensor technologies, D4,00.01.01, 14/10/2011.
    [4] Shariff K and Wray A. Analysis of the Radar reflectivity of aircraft vortex wakes[J]. Journal of Fluid Mechanics, 2002, 463(1): 121–161.
    [5] Liu Z X. Modélisation des signatures radar des tourbillons de sillage par temps de pluie[D]. [Ph.D. dissertation], 2013.
    [6] Li J L, Wang X S, Wang T, et al. Circulation retrieval of wake vortex under rainy condition with a vertically pointing radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1893–1906. DOI: 10.1109/TAES.2017.2675198
    [7] Barbaresco F, Brion V, and Jeannin N. Radar wake-vortices cross-section/Doppler signature characterisation based on simulation and field tests trials[J]. IET Radar,Sonar&Navigation, 2016, 10(1): 82–96.
    [8] Oude Nijhuis A C P, Thobois L P, Barbaresco F, et al.. Wind hazard and turbulence monitoring at airports with lidar and radar sensors and Mode-S downlinks: The UFO Project[J]. Bulletin of the American Meteorological Society. (in press)
    [9] Kovalev D, Vanhoenacker-Janvier D, Wilson R, et al.. Electromagnetic wind radar simulator validation using meteorological data and a zenith X-band radar[C]. 2016 European Radar Conference (EuRAD 2016), London, 2016.
    [10] Barbaresco F, Thobois L, Dolfi-Bouteyre A, et al.. Monitoring wind, turbulence and aircraft wake vortices by high resolution RADAR and LIDAR remote sensors in all weather conditions[Z]. Journées scientifiques URSI, 2015.
    [11] Barbaresco F, Jeantet A, and Meier U. Wake vortex detection & monitoring by X-band doppler radar: Paris orly radar campaign results[C]. Proceedings of IET International Conference on Radar Systems, Edinburgh, UK, 2007.
    [12] Barbaresco F, Wasselin J P, Jeantet A, et al.. Wake vortex monitoring & profiling by Doppler X-band radar in all weather conditions[C]. Eurocontrol Innovative Research Workshop, Bretigny, 2007.
    [13] Barbaresco F, Wasselin J P, Jeantet A, et al.. Wake vortex profiling by Doppler X-band radar: Orly trials at initial take-off & ILS interception critical areas[C]. Proceedings of IEEE Radar Conference, Rome, 2008.
    [14] Barbaresco F, Jeantet A, and Meier U. Wake vortex X-band radar monitoring: Paris-CDG airport 2008 campaign results & prospectives[C]. Proceedings of International Radar Conference-Surveillance for a Safer World, Bordeaux, France, 2009.
    [15] Barbaresco F and Meier U. Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air[J]. Comptes Rendus Physique, 2010, 11(1): 54–67. DOI: 10.1016/j.crhy.2010.01.001
    [16] Barbaresco F. Airport radar monitoring of wake vortex in all weather conditions[C]. Proceedings of 2010 European Radar Conference (EuRAD), Paris, 2010: 85–88.
    [17] Barbaresco F, Juge P, Klein M, et al.. Optimising runway throughput through wake vortex detection, prediction and decision support tools[C]. Proceedings of 2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles (TIWDC/ESAV), Capri, Italy, 2011.
    [18] Barbaresco F, Juge P, Klein M, et al.. Wake vortex detection, prediction and decision support tools[C]. Proceedings of the 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference (DASC), East Syracuse, NY, 2013: 6B1-1–6B1-15.
    [19] Barbaresco F, Juge P, Klein M, et al.. Boom of airport capacity based on wake vortex hasards mitigation sensors and systems[C]. AUN2014: Airports in Urban Networks, Paris, 2014.
    [20] Barbaresco F, Juge P, Bruchec P, et al.. Eddy Dissipation Rate (EDR) retrieval with ultra-fast high range resolution electronic-scanning X-band airport radar: Results of European FP7 UFO toulouse airport trials[C]. Proceedings of 2015 European Radar Conference (EuRAD), Paris, 2015.
    [21] Speiker L J P, Barbaresco F, Frech M, et al. ATC-Wake: Integrated wake vortex safety & capacity system[J]. Journal of Air Traffic Control, 2007, 49(1): 17–32.
    [22] Winckelmans G, Desenfans O, Barbaresco F, et al.. The ATC-Wake Predictor system and its potential use to increase the capacity at airports[C]. International Symposium on Sensors and Systems for Airport Surveillance, Paris, France, 2005.
    [23] Barbaresco F. Compréhension et maîtrise des tourbillons de sillage: Cinq siècles d’aventures de Léonard de Vinci à Jean Leray[Z]. Revue REE, 2013(3): 84–88.
    [24] Barbaresco F. Airport radar monitoring of wake vortex in all weather conditions[C]. Proceedings of 2010 European Radar Conference (EuRAD), Paris, 2010.
    [25] Vanhoenacker-Janvier D, Djafri K, della Faille de Leverghem R, et al.. Simulation of the radar cross-section of wake vortices in clear air[C]. Proceedings of the Seventh European Conference on Radar in Meteorology and Hydrology, Toulouse, 2012.
    [26] Barbaresco F, Juge P, Klein M, et al.. Wake vortex detection, prediction and decision support tools in SESAR program[C]. Proceedings of the 32th Digital Avionics Systems Conference (DASC), East Syracuse, NY, 2013.
    [27] Barbaresco F. Radar monitoring of wake vortex: Electromagnetic reflection of wake turbulence in clear air[Z]. CR Physique Académie des Sciences, Elsevier, 2010.
    [28] Liu Z, Jeannin N, Vincent F, et al.. Development of a radar simulator for monitoring wake vortices in rainy weather[C]. Proceedings of 2011 IEEE CIE International Conference on Radar (Radar), Chengdu, China, 2011.
  • 加载中
图(24) / 表(4)
计量
  • 文章访问数:  1582
  • HTML全文浏览量:  485
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 修回日期:  2017-12-15
  • 网络出版日期:  2017-12-28

目录

    /

    返回文章
    返回