Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms
-
摘要: 为了提升星载合成孔径雷达(SAR)的高分宽幅成像能力,该文提出一种基于短偏移正交(STSO)波形的多发多收合成孔径雷达(MIMO SAR)处理方案。基于俯仰向的多波束数字波束形成技术,混合回波信号中的STSO波形能够得到有效分离。根据对MIMO SAR成像几何模型和天线结构的分析,采用修正的方位向多通道重构矩阵对分离信号进行处理,得到的重构数据可利用传统SAR成像算法进行成像。仿真实验证明,该处理方案能够有效抑制短偏移正交波形之间的相互干扰,并具有较好的成像性能。Abstract: This study presents a novel processing scheme for Multiple-Input Multiple-Output (MIMO) Synthetic Aperture Radar (SAR) system with Short-Term Shift-Orthogonal (STSO) chirp waveforms to enhance its high-resolution wide-swath mapping capability. Taking advantage of multi-beam digital beamforming techniques in elevation, the STSO chirp waveforms can be efficiently separated from mixed echo signals. According to the geometry model and the antenna architecture of MIMO SAR system, the modified multichannel reconstruction matrix is used to reconstruct the separated signals in azimuth. In addition, the reconstruction data can be imaged via conventional SAR algorithm. Simulation experiments are conducted on both point targets and distributed targets, the results of which indicate that the proposed scheme can effectively suppress the mutual interferences between the STSO waveforms and that it has good imaging performance.
-
表 1 MIMO SAR系统参数
Table 1. MIMO SAR system parameters
参数 数值 轨道高度(km) 500 卫星速度(m/s) 7612 载频(GHz) 9.65 视角范围(°) 22.3–38.3 测绘带宽(km) 200 信号带宽(MHz) 75 脉冲宽度(μs) 160 天线宽度(m) 3.2 俯仰向子孔径数目 39 天线长度(m) 12 方位向子孔径数目 3 多普勒带宽(Hz) 3806 脉冲重复频率(Hz) 890 表 2 点目标成像质量参数
Table 2. The imaging parameters of point targets
参数 目标2 目标5 目标8 距离向 PSLR (dB) –13.27 –13.26 –13.28 ISLR (dB) –10.68 –10.67 –10.68 分辨率(m) 1.81 1.79 1.80 方位向 PSLR (dB) –13.24 –13.25 –13.25 ISLR (dB) –10.68 –10.66 –10.67 分辨率(m) 1.79 1.80 1.81 -
[1] Cumming I G and Wong F H. Digital Processing of Synth-etic Aperture Radar Data: Algorithms and Implemen-tation[M]. Norwood, MA: Artech House, 2005: 3–15. [2] Freeman A, Johnson W T K, Huneycutt B, et al. The " Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. DOI: 10.1109/36.823926 [3] Suess M, Grafmueller B, Zahn R, et al.. A novel high resolution, wide swath SAR system[C]. Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, 2001, 3: 1013–1015. DOI: 10.1109/IGARSS.2001.976731. [4] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution and wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542 [5] Huber S, Villano M, Younis M, et al.. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1237–1241. [6] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974 [7] Wang Wen-qin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. DOI: 10.1109/TGRS.2011.2116030 [8] Wang Wen-qin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18–23. DOI: 10.1109/MAES.2013.6575407 [9] Krieger G, Rommel T, and Moreira A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 91–96. [10] Ender J and Klare J. System architectures and algorithms for radar imaging by MIMO-SAR[C]. Proceedings of 2009 IEEE Radar Conference, Pasadena, 2009: 1–6. DOI: 10.1109/RADAR.2009.4976997. [11] Kim J H, Younis M, Moreira A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. DOI: 10.1109/TGRS.2014.2360148 [12] Krieger G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. DOI: 10.1109/TGRS.2013.2263934 [13] Kim J H, Younis M, Moreira A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. DOI: 10.1109/LGRS.2012.2213577 [14] Wang Jie, Chen Long-yong, Liang Xing-dong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. DOI: 10.1109/TGRS.2015.2419271 [15] Wang Jie, Liang Xing-dong, Chen Long-yong, et al. A novel space-time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556–1560. DOI: 10.1109/TGRS.2011.2116030 [16] He Feng, Dong Zhen, and Liang Dian-nong. A novel space-time coding alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229–233. DOI: 10.1109/LGRS.2015.2412961 [17] Van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2002. [18] Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700