一种基于短偏移正交波形的MIMO SAR处理方案研究

叶恺 禹卫东 王伟

叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376-387. doi: 10.12000/JR17048
引用本文: 叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376-387. doi: 10.12000/JR17048
Ye Kai, Yu Weidong, Wang Wei. Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms[J]. Journal of Radars, 2017, 6(4): 376-387. doi: 10.12000/JR17048
Citation: Ye Kai, Yu Weidong, Wang Wei. Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms[J]. Journal of Radars, 2017, 6(4): 376-387. doi: 10.12000/JR17048

一种基于短偏移正交波形的MIMO SAR处理方案研究

doi: 10.12000/JR17048
基金项目: 国家部委基金
详细信息
    作者简介:

    叶恺:叶   恺(1988–),男,中国科学院电子学研究所博士研究生,研究方向为新体制SAR系统设计和信号处理。E-mail: yekai_seven@hotmail.com

    禹卫东(1969–),男,中国科学院电子学研究所研究员、博士生导师,研究方向为合成孔径雷达系统设计和信号处理

    王伟:王   伟(1985–),男,毕业于中国科学院电子学研究所,获得博士学位,研究方向为新体制SAR系统设计和信号处理

    通讯作者:

    叶恺   yekai_seven@hotmail.com

Investigation on Processing Scheme for MIMO SAR with STSO Chirp Waveforms

Funds: The National Ministries Foundation
  • 摘要: 为了提升星载合成孔径雷达(SAR)的高分宽幅成像能力,该文提出一种基于短偏移正交(STSO)波形的多发多收合成孔径雷达(MIMO SAR)处理方案。基于俯仰向的多波束数字波束形成技术,混合回波信号中的STSO波形能够得到有效分离。根据对MIMO SAR成像几何模型和天线结构的分析,采用修正的方位向多通道重构矩阵对分离信号进行处理,得到的重构数据可利用传统SAR成像算法进行成像。仿真实验证明,该处理方案能够有效抑制短偏移正交波形之间的相互干扰,并具有较好的成像性能。

     

  • 图  1  MIMO SAR成像几何模型和天线结构示意图

    Figure  1.  Geometry model and antenna architecture of MIMO SAR

    图  2  STSO波形信号模型示意图

    Figure  2.  Signal model of STSO waveforms

    图  3  多波束DBF示意图

    Figure  3.  Illustration of multi-beam DBF technique

    图  4  STSO波形回波干扰示意图

    Figure  4.  Illustration of mutual interferences between STSO waveforms

    图  5  DBF形成的接收波束方向图

    Figure  5.  Receiving beam patterns generated by DBF

    图  6  主要处理流程框图

    Figure  6.  Main processing procedure

    图  7  俯仰向的波形分离处理框图

    Figure  7.  Block diagram of waveform separation in elevation

    图  8  系统波位图

    Figure  8.  Timing diagram

    图  9  距离信号模糊比

    Figure  9.  Range ambiguity-to-signal ratio

    图  10  点目标成像场景示意图

    Figure  10.  Simulation scene of point targets

    图  11  点目标1维仿真结果

    Figure  11.  One dimensional simulation results of point targets

    图  12  点目标2维仿真结果

    Figure  12.  Two dimensional simulation results of point targets

    图  13  分布目标仿真结果

    Figure  13.  The simulation results of distributed targets

    表  1  MIMO SAR系统参数

    Table  1.   MIMO SAR system parameters

    参数 数值
    轨道高度(km) 500
    卫星速度(m/s) 7612
    载频(GHz) 9.65
    视角范围(°) 22.3–38.3
    测绘带宽(km) 200
    信号带宽(MHz) 75
    脉冲宽度(μs) 160
    天线宽度(m) 3.2
    俯仰向子孔径数目 39
    天线长度(m) 12
    方位向子孔径数目 3
    多普勒带宽(Hz) 3806
    脉冲重复频率(Hz) 890
    下载: 导出CSV

    表  2  点目标成像质量参数

    Table  2.   The imaging parameters of point targets

    参数 目标2 目标5 目标8
    距离向 PSLR (dB) –13.27 –13.26 –13.28
    ISLR (dB) –10.68 –10.67 –10.68
    分辨率(m) 1.81 1.79 1.80
    方位向 PSLR (dB) –13.24 –13.25 –13.25
    ISLR (dB) –10.68 –10.66 –10.67
    分辨率(m) 1.79 1.80 1.81
    下载: 导出CSV
  • [1] Cumming I G and Wong F H. Digital Processing of Synth-etic Aperture Radar Data: Algorithms and Implemen-tation[M]. Norwood, MA: Artech House, 2005: 3–15.
    [2] Freeman A, Johnson W T K, Huneycutt B, et al. The " Myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. DOI: 10.1109/36.823926
    [3] Suess M, Grafmueller B, Zahn R, et al.. A novel high resolution, wide swath SAR system[C]. Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, 2001, 3: 1013–1015. DOI: 10.1109/IGARSS.2001.976731.
    [4] Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution and wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542
    [5] Huber S, Villano M, Younis M, et al.. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1237–1241.
    [6] Krieger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. DOI: 10.1109/TGRS.2007.905974
    [7] Wang Wen-qin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. DOI: 10.1109/TGRS.2011.2116030
    [8] Wang Wen-qin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18–23. DOI: 10.1109/MAES.2013.6575407
    [9] Krieger G, Rommel T, and Moreira A. MIMO-SAR tomography[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 91–96.
    [10] Ender J and Klare J. System architectures and algorithms for radar imaging by MIMO-SAR[C]. Proceedings of 2009 IEEE Radar Conference, Pasadena, 2009: 1–6. DOI: 10.1109/RADAR.2009.4976997.
    [11] Kim J H, Younis M, Moreira A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. DOI: 10.1109/TGRS.2014.2360148
    [12] Krieger G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. DOI: 10.1109/TGRS.2013.2263934
    [13] Kim J H, Younis M, Moreira A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. DOI: 10.1109/LGRS.2012.2213577
    [14] Wang Jie, Chen Long-yong, Liang Xing-dong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. DOI: 10.1109/TGRS.2015.2419271
    [15] Wang Jie, Liang Xing-dong, Chen Long-yong, et al. A novel space-time coding scheme used for MIMO-SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1556–1560. DOI: 10.1109/TGRS.2011.2116030
    [16] He Feng, Dong Zhen, and Liang Dian-nong. A novel space-time coding alamouti waveform scheme for MIMO-SAR implementation[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2): 229–233. DOI: 10.1109/LGRS.2015.2412961
    [17] Van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory[M]. New York: John Wiley & Sons, 2002.
    [18] Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  2901
  • HTML全文浏览量:  642
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-19
  • 修回日期:  2017-06-07
  • 网络出版日期:  2017-08-28

目录

    /

    返回文章
    返回