基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法

赵庆超 张毅 王宇 王伟 王翔宇

赵庆超, 张毅, 王宇, 王伟, 王翔宇. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408-419. doi: 10.12000/JR17035
引用本文: 赵庆超, 张毅, 王宇, 王伟, 王翔宇. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408-419. doi: 10.12000/JR17035
Zhao Qingchao, Zhang Yi, Wang Robert, Wang Wei, Wang Xiangyu. Signal Reconstruction Approach for Multichannel SAR in Azimuth Based on Multiframe Super resolution[J]. Journal of Radars, 2017, 6(4): 408-419. doi: 10.12000/JR17035
Citation: Zhao Qingchao, Zhang Yi, Wang Robert, Wang Wei, Wang Xiangyu. Signal Reconstruction Approach for Multichannel SAR in Azimuth Based on Multiframe Super resolution[J]. Journal of Radars, 2017, 6(4): 408-419. doi: 10.12000/JR17035

基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法

DOI: 10.12000/JR17035
基金项目: 国家自然科学基金优秀青年基金(61422113),国家万人计划-青年拔尖人才,中科院百人计划,L波段差分干涉SAR项目
详细信息
    作者简介:

    赵庆超(1987–),男,山东人,中国科学院电子学研究所电子与通信工程专业硕士研究生,研究方向为多通道星载SAR信号处理。E-mail: zqc_nudt@163.com

    张 毅(1971–),男,上海人,现为中国科学院电子学研究所研究员,硕士生导师,研究方向为高速数字信号处理、合成孔径雷达信号处理新技术研究、合成孔径雷达系统设计等。E-mail: zhangyi@mail.ie.ac.cn

    王 宇(1980–),男,河南人,现为中国科学院电子学研究所研究员,博士生导师,研究方向为SAR系统设计与信号处理技术。E-mail: yuwang@mail.ie.ac.cn

    王 伟(1985–),男,河北人,毕业于中国科学院电子学研究所,获得博士学位,现为中国科学院电子学研究所助理研究员,研究方向为新体制星载SAR系统设计和信号处理。E-mail: ww_nudt@sina.com

    王翔宇(1990–),男,天津人,中国科学院电子学研究所通信与信息系统专业博士研究生,研究方向为高分宽测模式信号处理技术。E-mail: wangxiangyu13@mails.ucas.ac.cn

    通讯作者:

    赵庆超   zqc_nudt@163.com

Signal Reconstruction Approach for Multichannel SAR in Azimuth Based on Multiframe Super resolution

Funds: The National Natural Science Foundation of China (61422113), The National Ten Thousand Talent Program-Young Top Notch Talent Program, The Hundred Talents Program of the Chinese Academy of Sciences, The TWIn-L SAR (Terrain Wide-swath Interferometry L-band SAR) Program
  • 摘要: 方位向多通道技术是星载合成孔径雷达(Synthetic Aperture Radar, SAR)同时实现高分辨率宽测绘带成像的有效手段,对于方位向多通道星载SAR系统,当脉冲重复频率(Pulse Repetition Frequency, PRF)不满足均匀采样条件时方位向信号被非均匀采样,成像前需进行均匀化重建。该文创新性地提出以数字图像处理(Digital Image Processing, DIP)领域多帧超分辨率的思路解决方位向多通道星载SAR非均匀采样信号重建问题,并总结给出了多帧超分辨处理的一般方法。仿真与实测数据实验验证了方法的有效性,且在复杂度性能上具有一定优势。该文第1次建立了方位向多通道星载SAR非均匀采样信号重建与多帧超分辨率问题的联系,为这一信号重建问题的解决提供一种新的思路。

     

  • 图  1  单帧及多帧超分辨率模型

    Figure  1.  Model for single image and multiframe super resolution

    图  2  方位向三通道系统模型与收发几何

    Figure  2.  Model and geometry for azimuth 3 channels system

    图  3  方位向三通道系统采样场景

    Figure  3.  The sampling scenario of anazimuth 3 channels system

    图  4  多帧超分辨率与多通道SAR信号重建对比

    Figure  4.  Comparison of multiframe super resolution and signal reconstruction of multichannel SAR system

    图  5  仅考虑几何变换的图像退化模型

    Figure  5.  Image degradation model with only geometric transformation considered

    图  6  图像(信号)退化模型求逆

    Figure  6.  Inverse of image (signal) degradation model

    图  7  多帧超分辨处理的一般流程

    Figure  7.  General process for multiframe super-resolution

    图  8  PRF满足均匀采样条件时仿真结果

    Figure  8.  Simulation results for the uniform sampling situation

    图  9  PRF不满足均匀采样条件时仿真结果

    Figure  9.  Simulation results for the nonuniform sampling situation

    图  10  非均匀采样重建后仿真结果

    Figure  10.  Simulation results for the nonuniform sampling situation after reconstruction

    图  11  方位向压缩结果局部放大

    Figure  11.  Partial enlarged drawing of the compression result in azimuth

    图  12  实验用数据获取方法

    Figure  12.  Acquisition method of the data for experiments

    图  13  通道1及两通道不做重建成像结果

    Figure  13.  The images obtained from the first channel and the unreconstructed nonuniform data

    图  14  信号均匀化重建后成像结果

    Figure  14.  The images obtained after signal reconstruction

    图  15  实测数据点目标方位向切片

    Figure  15.  Zoomed azimuth cut of the point target in the image with both methods

    图  16  滤波器组方法的处理流程

    Figure  16.  The realization of filter group method

    表  1  方位向多通道星载SAR系统参数

    Table  1.   The parameters for a spaceborne azimuth multichannel system

    系统参数 数值
    载波波长(m) 0.0311
    方位向通道数 4
    理想脉冲重复频率(Hz) 1247
    载荷飞行速度(m/s) 7483
    方位向子孔径间距(m) 3
    多普勒带宽(Hz) 4000
    下载: 导出CSV
  • [1] 邓云凯, 赵凤军, 王宇. 星载SAR技术的发展趋势及应用浅析[J]. 雷达学报, 2012, 1(1): 1–10

    Deng Yun-kai, Zhao Feng-jun, and Wang Yu. Brief analysis on the development and application of spaceborne SAR[J]. Journal of Radars, 2012, 1(1): 1–10
    [2] Lee J S and Pottier E. 洪文, 李洋, 尹嫱, 译. 极化雷达成像基础与应用[M]. 北京: 电子工业出版社, 2013: 199–223.

    Lee J S and Pottier E. Hong Wen, Li Yang, and Yin Qiang, Trans. Polarimetric Radar Imaging From Basics to Applications[M]. Beijing: Publishing House of Electronics Industry, 2013: 199–223.
    [3] Wiley C A. Synthetic aperture radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, AES-21(3): 440–443. DOI: 10.1109/TAES.1985.310578
    [4] Freeman A, Johnson W T K, Huneycutt B, et al. The " myth” of the minimum SAR antenna area constraint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 320–324. DOI: 10.1109/36.823926
    [5] Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122–135. DOI: 10.1049/ip-f-2.1992.0016
    [6] Younis M, Fischer C, and Wiesbeck W. Digital beamforming in SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1735–1739. DOI: 10.1109/TGRS.2003.815662
    [7] Mittermayer J and Runge H. Conceptual studies for exploiting the TerraSAR-X dual receive antenna[C]. Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 2140–2142.
    [8] Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
    [9] 齐维孔, 禹卫东. 基于滤波器组的星载SAR DPC-MAB技术方位向非均匀采样信号的重构[J]. 系统工程与电子技术, 2008, 30(7): 1218–1222

    Qi Wei-kong and Yu Wei-dong. Reconstruction of nonuniform azimuth sampling signals of space borne SAR DPC-MAB technique based on filter banks[J]. Systems Engineering and Electronics, 2008, 30(7): 1218–1222
    [10] Li Zhen-fang, Wang Hong-yang, Su Tao, et al. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1): 82–86. DOI: 10.1109/LGRS.2004.840610
    [11] 陈倩, 邓云凯, 刘亚东, 等. 基于自适应滤波的DPC-MAB SAR方位向信号重建[J]. 电子与信息学报, 2012, 34(6): 1331–1336

    Chen Qian, Deng Yun-kai, Liu Ya-dong, et al. SAR azimuth signal reconstruction based on adaptive filtering for the DPC-MAB SAR system[J]. Journal of Electronics&Information Technology, 2012, 34(6): 1331–1336
    [12] Sikaneta I, Gierull C H, and Cerutti-Maori D. Optimum signal processing for multichannel SAR: With application to high-resolution wide-swath imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6095–6109. DOI: 10.1109/TGRS.2013.2294940
    [13] Sikaneta I, Cerutti-Maori D, Klare J, et al.. Comparison of multi-channel high-resolution wide-swath SAR processing methods[C]. Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec, Canada, 2014: 3834–3837.
    [14] Liu Guang-yan, Wang You-lin, and Lin You-quan. Unambiguous reconstruction and imaging of nonuniform sampling SAR signals[C]. Proceedings of the 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007: 253–256.
    [15] Zhao Shuo, Wang R, Deng Yun-kai, et al. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998–5006. DOI: 10.1109/JSTARS.2015.2421303
    [16] Siu W C and Hung K W. Review of image interpolation and super-resolution[C]. Proceedings of 2012 Asia-Pacific Signal & Information Processing Association Annual Summit and Conference, Hollywood, CA, 2012: 1–10.
    [17] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013, 39(8): 1202–1213

    Su Heng, Zhou Jie, and Zhang Zhi-hao. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202–1213
    [18] 刘鹏, 刘定生, 李国庆. 基于矩阵秩估计偏移量的频域超分辨率重建[J]. 计算机工程, 2009, 35(15): 29–31, 34 doi: 10.3969/j.issn.1000-3428.2009.15.010

    Liu Peng, Liu Ding-sheng, and Li Guo-qing. Frequency field super-resolution reconstruction based on estimation offset of matrix rank[J]. Computer Engineering, 2009, 35(15): 29–31, 34. DOI: 10.3969/j.issn.1000-3428.2009.15.010
    [19] Jiang Jun-jun, Ma Xiang, Chen Chen, et al. Single image super-resolution via locally regularized anchored neighborhood regression and nonlocal means[J]. IEEE Transactions on Multimedia, 2017, 19(1): 15–26. DOI: 10.1109/TMM.2016.2599145
    [20] Tsai R Y and Huang T S. Multiframe image restoration and registration[J]. Advances in Computer Vision and Image Processing, 1984, 1(2): 317–339.
    [21] Oppenheim A V, Willsky A S, and Nawab S H. Signals and Systems[M]. Second Edition, Beijing: Publishing House of Electronics Industry, 2015: 190–200.
    [22] Proakis J G and Manolaki D G. 方艳梅, 刘永清, 译. 数字信号处理: 原理、算法与应用[M]. 第4版, 北京: 电子工业出版社, 2014: 332–350.

    Proakis J G and Manolaki D G. Fang Yan-mei and Liu Yong-qing, Trans. Digital Signal Processing: Principles, Algorithms, and Applications[M]. Fourth Edition, Beijing: Publishing House of Electronics Industry, 2014: 332–350.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  2695
  • HTML全文浏览量:  744
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-30
  • 修回日期:  2017-07-19
  • 网络出版日期:  2017-08-28

目录

    /

    返回文章
    返回