基于互相关熵的非高斯背景下微动参数估计方法

熊丁丁 崔国龙 孔令讲 杨晓波

熊丁丁, 崔国龙, 孔令讲, 杨晓波. 基于互相关熵的非高斯背景下微动参数估计方法[J]. 雷达学报, 2017, 6(3): 300-308. doi: 10.12000/JR17007
引用本文: 熊丁丁, 崔国龙, 孔令讲, 杨晓波. 基于互相关熵的非高斯背景下微动参数估计方法[J]. 雷达学报, 2017, 6(3): 300-308. doi: 10.12000/JR17007
Xiong Dingding, Cui Guolong, Kong Lingjiang, Yang Xiaobo. Micro-motion Parameter Estimation in Non-Gaussian Noise via Mutual Correntropy[J]. Journal of Radars, 2017, 6(3): 300-308. doi: 10.12000/JR17007
Citation: Xiong Dingding, Cui Guolong, Kong Lingjiang, Yang Xiaobo. Micro-motion Parameter Estimation in Non-Gaussian Noise via Mutual Correntropy[J]. Journal of Radars, 2017, 6(3): 300-308. doi: 10.12000/JR17007

基于互相关熵的非高斯背景下微动参数估计方法

DOI: 10.12000/JR17007
基金项目: 国家自然科学基金(61501083, 61301266)
详细信息
    作者简介:

    熊丁丁(1993–),女,江西人,电子科技大学硕士研究生,研究方向为微动目标检测和估计、手势雷达定位和识别等。 E-mail: 862815090@qq.com

    崔国龙(1982–),男,安徽人,电子科技大学副教授,博士生导师,《雷达学报》编委。研究方向为最优化理论和算法、雷达目标检测理论、波形多样性以及阵列信号处理等

    孔令讲(1974–),男,河南人,电子科技大学教授,博士生导师,长江学者。研究方向为宽带雷达系统技术、弱目标检测跟踪技术、雷达协同探测技术、相控阵激光雷达技术等

    杨晓波(1964–),男,四川人,电子科技大学教授,博士生导师。研究方向为穿墙雷达技术、弱目标检测跟踪技术、雷达协同探测技术等

    通讯作者:

    崔国龙  cuiguolong@uestc.edu.cn

  • 中图分类号: TN957.51

Micro-motion Parameter Estimation in Non-Gaussian Noise via Mutual Correntropy

Funds: The National Natural Science Foundation of China (61501083, 61301266)
  • 摘要: 针对非高斯背景下微动目标的参数估计问题,该文采用单发多收(SIMO)的线性调频连续波(LFMCW)雷达系统,提出了一种基于互相关熵的微动参数估计方法。该方法利用多通道回波信号的2阶和高阶信息,对回波中所含的目标信息实现更准确的量化,从而得到更好的微动参数估计效果。在非高斯背景下,相比传统傅里叶变换的方法,该方法能在微动目标的成像效果中实现更好的雷达成像效果以及更高的输出信噪比。同时,该文采用单脉冲比相(PCM)定位的方法,通过提取多通道回波的相位信息,计算不同通道间的相位差和目标的方位角,从而实现了对微动目标的准确定位。最后,仿真结果证明了该方法的有效性。

     

  • 图  1  SIMO雷达模型

    Figure  1.  The SIMO system model

    图  2  LFMCW时频关系

    Figure  2.  Frequency-time relation of LFMCW

    图  3  算法流程图

    Figure  3.  The flowchart of the mutual correntropy algorithm

    图  4  PCM测角示意图

    Figure  4.  The schematic of PCM algorithm

    图  5  传统傅里叶分析结果

    Figure  5.  Conventional Fourier analysis results

    图  6  自相关熵分析结果

    Figure  6.  The auto-correntropy processing results

    图  7  互相关熵分析结果

    Figure  7.  The mutual correntropy processing results

    图  8  非高斯背景下输入输出信噪比关系

    Figure  8.  The output SNR versus different input SNR

    图  9  微动目标定位结果

    Figure  9.  The location result of PCM

    表  1  仿真参数

    Table  1.   Simulation parameters

    参数 探测参数 参数值
    载波频率f0 1 GHz
    信号带宽B 500 M
    系统参数 信号时宽T 3.31 ms
    LFM周期数N 512
    核尺度 $\sigma $ 0.2
    目标参数 距离R 6 m
    振动频率f1 4 Hz
    振动频率f2 8 Hz
    振动幅度A1 4 mm
    振动幅度A2 4 mm
    坐标(x, y) (0, 6) m
    信噪比SNRin –10 dB
    场景噪声参数 噪声类型 韦布尔噪声
    韦布尔形状因子P 2
    下载: 导出CSV
  • [1] Tahmoush Dave. Review of micro-Doppler signatures[J]. IET Radar, Sonar & Navigation, 2015, 9(9): 1140–1146.
    [2] Li Yan-bing, Du Lan, and Liu Hong-wei. Hierarchical classification of moving vehicles based on empirical mode decomposition of micro-Doppler signatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3001–3013. doi: 10.1109/TGRS.2012.2216885
    [3] Chen V C. The Micro-Doppler Effect in Radar[M]. London: Artech House, 2001: 157–159.
    [4] Chen V C, Li Fa-yin, Ho Shen-shyang, et al.. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [5] 胡程, 廖鑫, 向寅, 等. 一种生命探测雷达微多普勒测量灵敏度分析新方法[J]. 雷达学报, 2016, 5(5): 455–461. http://radars.ie.ac.cn/CN/abstract/abstract380.shtml

    Hu Cheng, Liao Xin, Xiang Yin, et al.. Novel analytic method for determining micro-Doppler measurement sensitivity in life-detection radar[J]. Journal of Radars, 2016, 5(5): 455–461. http://radars.ie.ac.cn/CN/abstract/abstract380.shtml
    [6] Zhang Wen-peng, Li Kang-le, and Jiang Wei-dong. Parameter estimation of radar targets with macro-motion and micro-motion based on circular correlation coefficients[J]. IEEE Signal Processing Letters, 2015, 22(5): 633–637. doi: 10.1109/LSP.2014.2365547
    [7] Liu Jin, Ai Xiao-feng, Zhao Feng, et al.. Motion estimation of micro-motion targets with translational motion[C]. IET International Radar Conference, Hangzhou, China, 2015: 1–5.
    [8] Jia Yong, Kong Ling-jiang, Yang Xiao-bo, et al.. A novel method for detection of micro-motion target in image domain[C]. 2011 IEEE Radar Conference, Chengdu, China, 2011: 99–102.
    [9] Kong Ling-jiang and Principe Jose C. Life detection based on correntropy spectral density[C]. 2010 IEEE International Conference on Signal Processing, Beijing, China, 2011: 168–171.
    [10] Mahafza B, Elsherbeni A, 朱国富, 黄晓涛, 黎向阳, 等. 雷达系统设计MATLAB仿真[M]. 第1版, 北京: 电子工业出版社, 2009: 297–299.

    Mahafza B, Elsherbeni A, Zhu Guo-fu, Huang Xiao-tao, Li Xiang-yang, et al.. MATLAB Simulations for Radar Systems Design[M]. First edition, Beijing: Publishing House of Electronics Industry, 2009: 297–299.
    [11] Liu Wei-feng, Pokharel P P, and Principe Jose C. Correntropy: Properties and applications in non-Gaussian signal precessing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286–5298. doi: 10.1109/TSP.2007.896065
    [12] Santamaria I, Pokharel P P, and Principe Jose C. Generalized correlation function: Definition, properties, and application to blind equalization[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187–2197. doi: 10.1109/TSP.2006.872524
    [13] Yamaguchi K, Saito M, Akiyama T, et al.. A 24 GHz band FM-CW radar system for detecting closed multiple targets with small displacement[C]. 2015 International Conference on Ubiquitous and Future Networks, Sapporo, Japan, 2015: 268–273.
    [14] Narumi K and Takayama J. Material discrimination and propagation time estimation for buried object based on cross correlation processing using microwave radar[C]. Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Tsukuba, Japan, 2016: 1287–1292.
    [15] Molchanov Pavlo, Gupta Shalini, Kim Kihwan, et al.. Short-range FMCW monopulse radar for hand-gesture sensing[C]. 2015 IEEE Radar Conference, Arlington, VA, USA, 2015: 1491–1496.
    [16] 李青华, 孔令讲, 杨晓波. 基于SIRP法的相关韦布尔分布雷达杂波仿真[J]. 雷达科学与技术, 2011, 9(3): 253–258. http://www.cnki.com.cn/Article/CJFDTOTAL-LDKJ201103012.htm

    Li Qing-hua, Kong Ling-jiang, and Yang Xiao-bo. Simulation of correlated Weibull distribution radar clutter based on SIRP method[J]. Radar Science and Technology, 2011, 9(3): 253–258. http://www.cnki.com.cn/Article/CJFDTOTAL-LDKJ201103012.htm
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2531
  • HTML全文浏览量:  638
  • PDF下载量:  726
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-17
  • 修回日期:  2017-03-09
  • 网络出版日期:  2017-06-28

目录

    /

    返回文章
    返回