基于检测前聚焦的临近空间高动态飞行器雷达探测研究

许稼 彭应宁 夏香根 龙腾 毛二可

许稼, 彭应宁, 夏香根, 龙腾, 毛二可. 基于检测前聚焦的临近空间高动态飞行器雷达探测研究[J]. 雷达学报, 2017, 6(3): 229-238. doi: 10.12000/JR16148
引用本文: 许稼, 彭应宁, 夏香根, 龙腾, 毛二可. 基于检测前聚焦的临近空间高动态飞行器雷达探测研究[J]. 雷达学报, 2017, 6(3): 229-238. doi: 10.12000/JR16148
Xu Jia, Peng Yingning, Xia Xianggen, Long Teng, Mao Erke. Focus-before-detection Methods for Radar Detection of Near Space High-maneuvering Aircrafts[J]. Journal of Radars, 2017, 6(3): 229-238. doi: 10.12000/JR16148
Citation: Xu Jia, Peng Yingning, Xia Xianggen, Long Teng, Mao Erke. Focus-before-detection Methods for Radar Detection of Near Space High-maneuvering Aircrafts[J]. Journal of Radars, 2017, 6(3): 229-238. doi: 10.12000/JR16148

基于检测前聚焦的临近空间高动态飞行器雷达探测研究

doi: 10.12000/JR16148
基金项目: 国家自然科学基金(61271391, 61671061),装备预研基金(6140415010216BQ01001),教育部新世纪优秀人才支持计划资助(NCET-13-0049)
详细信息
    作者简介:

    许稼 (1974–2017),男,安徽绩溪人,北京理工大学教授,博士生导师。中国电子学会会士、英国电子工程学会会士、国际电气与电子工程学会高级会员。研究领域包括高分辨率成像、检测与估计、多源信息融合、电磁态势仿真、混沌非线性等。承担国家重大专项、国家863重点、国家自然科学基金等项目40余项,申请国家发明专利45项,获清华大学优秀博士后奖,国家科技发明二等奖1项,入选北京理工大学杰出中青年教师和教育部新世纪优秀人才支持计划。发表学术论文200余篇,其中SCI收录45篇, EI收录100余篇。担任中国电子学会学术工作委员会委员、担任《Electronics Letters》、《Science in China》、《Chinese Journal of Electronics》、《电子学报》、《现代雷达》、《雷达科学与技术》、《雷达学报》等期刊编委

    彭应宁(1939–),男,四川郫县人,清华大学电子工程系教授,博士生导师。研究领域包括谱估计、自适应滤波、阵列信号处理、雷达信号处理、微光图像信号处理等。获国家科技发明二等奖1项,国家科技进步二等奖和三等奖各1项,省部级科技进步奖14项,光华科技进步一等奖1次,申请国家发明专利30余项,出版学术专著4部,译著3部,发表学术论文256篇,其中被SCI等检索200余篇。担任国务院学位委员会“信息与通信工程学科”评议组成员,欧洲SAR学会国际科学委员会委员,中国电子学会会士,中国雷达学会副主任。 

    夏香根(1963–),男,江苏高淳人,美国特拉华州大学教授、教育部长江学者讲座教授、美国电气和电子工程师协会会士(IEEE Fellow)。1983年、1986年和1992年分别获得南京师范大学学士学位,南开大学硕士学位和美国南加州大学博士学位。1995年–1996年在美国加州休斯研究实验室任高级研究员。研究领域包括空时编码、MIMO和OFDM通讯系统、数字信号处理、SAR和ISAR成像等。在国际期刊上发表论文160多篇,并拥有7项美国专利,出版了专著《Modulated Coding for Intersymbol Interference Channels (New York, Marcel Dekker, 2000)》(码间干扰信道的调制码)。1997年曾荣获美国国家自然科学基金的Faculty Early Career Development (CAREER) Program奖,1998年获得The Office of Naval Research (ONR) Young Investigator奖,2001年荣获了中国国家自然科学基金委的杰出海外青年奖,同年还荣获了美国特拉华州大学的杰出青年教师奖。担任《IEEE Transactions on Wireless Communications》,《IEEE Transactions on Vehicular Technology》,《IEEE Signal Processing Letters》,《Journal of Communications》 (JCM),以及《Journal of Communications and Networks》 (JCN)等国际知名学术期刊的副主编

    龙腾:龙   腾(1968–),男,湖北黄陂人,北京理工大学教授,博士生导师。现任信息与电子学院院长、雷达技术研究所所长。1999年美国Stanford大学电气工程系任客座副教授;2002年英国University College London 电气工程系任高级访问学者。教育部“新体制雷达与实时信息处理”创新团队带头人。担任英国工程技术学会会士(IET Fellow)、IEEE宇航电子学会雷达专业委员会委员、北京电子学会雷达专业委员会主任委员、中国电子学会信号处理分会副理事长、中国航空学会信号处理分会副理事长、中国航空学会电子分会副理事长。曾获北京十大杰出青年称号、获国家科技发明二等奖1项、国防和军队科技进步一等奖1项、二等奖5项、三等奖1项,发明专利80余项。发表学术论文200余篇,其中3大检索收录论文近100篇;出版学术著作2部

    毛二可(1934–),男,北京市人,中国工程院院士,北京理工大学教授,博士生导师。北京理工大学学术委员会委员,任北京电子学会常务理事,总装备部科技委兼职委员、空军科学技术与人才培养顾问。长期从事雷达系统及其信号处理方面的教学和科研工作。在雷达体制和杂波抑制方面取得重大的科研成果,先后主持和参加了30多项重点科研任务。在雷达系统及其信号处理和教书育人方面做出了创造性的贡献。研究成果曾获光华科技基金特等奖,国家发明一等奖1项、二等奖2项、三等奖2项、四等奖1项,部级奖多项。1984年获准为“有突出贡献的中青年技术专家”,1985年和1988年两次被评为北京市劳动模范,1989年评为全国先进工作者,1991年评为兵器工业系统劳动模范,2007年评为全国优秀共产党员

    通讯作者:

    许稼   xujia@bit.edu.cn

  • 中图分类号: TN951

Focus-before-detection Methods for Radar Detection of Near Space High-maneuvering Aircrafts

Funds: The National Natural Science Foundation of China (61271391, 61671061), The Advanced Project of PLA General Equipment Department Foundation of China (6140415010216BQ1001), The Program for New Century Excellent Talents in University (NCET-13-0049)
  • 摘要: 最近涌现的临近空间高动态飞行器存在超高速、高机动、超远程、低RCS、等离子鞘套、电离层污染、宇宙射线干扰等显著区别于常规目标的特性。基于空天地不同平台雷达临近空间高动态飞行器通用信号建模,该文提出了分布式组网、多维度、变模型、多目标、微运动、非参数化等应用的检测前聚焦雷达信号处理新方法,通过多维参数空间相参积累和能量聚焦,克服尺度伸缩、任意运动、孔径渡越、稀疏子带、跨距离、跨多普勒和跨波束等效应,有效抑制电离层污染和有源干扰,显著提高临近空间高动态飞行器的目标检测、参数测量、聚焦成像、机动跟踪、特征提取和属性识别等环节性能。该文方法适用于临近空间高动态目标也适用于探测常规雷达目标,适用于新体制雷达也适用于常规体制雷达,具备重要的学术理论价值和广阔的应用前景。

     

  • 图  1  典型的临近空间高速高机动目标

    Figure  1.  A typical high-speed and high-maneuvering target in near space

    图  2  常规雷达信号处理框图

    Figure  2.  Conventional radar signal processing block diagram

    图  3  检测前聚焦雷达信号处理框图

    Figure  3.  FBD based radar signal processing block diagram

  • [1] 杨学军, 张望新. 优势来自空间[M]. 北京: 国防工业出版社, 2006.
    [2] 李荣常, 程建, 郑连清. 空天一体信息作战[M]. 北京: 军事科学出版社, 2003.
    [3] 冯坤菊, 王春阳. 临近空间与空间作战[J]. 飞航导弹, 2009(3): 32–34. http://www.cnki.com.cn/Article/CJFDTOTAL-FHDD200903013.htm
    [4] 王胜开, 全寿文, 李淑华, 等. 临近空间和临近空间飞行器[J]. 现代军事, 2008(7): 36–39. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014080722.htm
    [5] 张宇. 美军HTV-2成功数次机动并达到20倍音速[N]. 环球时报, 2010-04-29(08).
    [6] 戴静, 程建, 郭锐. 临近空间高超声速武器防御及关键技术研究[J]. 装备指挥技术学院学报, 2010, 21(3): 58–61. http://www.cnki.com.cn/Article/CJFDTOTAL-XYZH201003017.htm

    Dai Jing, Cheng Jian, and Guo Rui. Research on near-space hypersonic weapon defense system and the key technology[J]. Journal of the Academy of Equipment Command & Technology, 2010, 21(3): 58–61. http://www.cnki.com.cn/Article/CJFDTOTAL-XYZH201003017.htm
    [7] 于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报, 2014, 35(6): 713–719. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201406015.htm

    Yu Zhe-feng, Liu Jia-qi, Liu Lian-yuan, et al.. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics, 2014, 35(6): 713–719. http://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201406015.htm
    [8] 李江挺, 郭立新, 方全杰, 等. 高超声速飞行器等离子鞘套中的电磁波传播[J]. 系统工程与电子技术, 2011, 33(5): 969–973. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201105004.htm

    Li Jiang-ting, Guo Li-xin, Fang Quan-jie, et al.. Electromagnetic wave propagation in plasma sheath of hypersonic vehicles[J]. Systems Engineering and Electronics, 2011, 33(5): 969–973. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201105004.htm
    [9] 赵良, 刘秀祥, 苏汉生. 高超声速飞行器等离子鞘套相关问题研究与展望[J]. 遥测遥控, 2015, 36(5): 28–32. http://www.cnki.com.cn/Article/CJFDTOTAL-YCYK201505009.htm

    Zhao Liang, Liu Xiu-xiang, and Su Han-sheng. Study and prospect on some issues of plasma sheath of hypersonic vehicle[J]. Journal of Telemetry, Tracking and Command, 2015, 36(5): 28–32. http://www.cnki.com.cn/Article/CJFDTOTAL-YCYK201505009.htm
    [10] 刘传保. 电离层对雷达测量精度的影响及校正方法研究[J]. 航天电子对抗, 2013, 29(2): 47–49, 53. http://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ201302014.htm

    Liu Chuan-bao. The effects of ionosphere to radar measurement precision and the correction methods[J]. Aerospace Electronic Warfare, 2013, 29(2): 47–49, 53. http://www.cnki.com.cn/Article/CJFDTOTAL-HTDZ201302014.htm
    [11] Franke S J, Liu C H, and Fang D J. Multifrequency study of ionospheric scintillation at Ascension island[J]. Radio Science, 1984, 19(3): 695–706. doi: 10.1029/RS019i003p00695
    [12] Emardson R, Jarlemark P, Johansson J, et al.. Spatial variability in the ionosphere measured with GNSS networks[J]. Radio Science, 2013, 48(5): 646–652. doi: 10.1002/rds.v48.5
    [13] Quegan S and Lamont J. Ionospheric and tropospheric effects on synthetic aperture radar performance[J]. International Journal of Remote Sensing, 1986, 7(4): 525–539. doi: 10.1080/01431168608954707
    [14] Barton D K. Radar System Analysis and Modeling[M]. Norwood, Mass, USA: Artech House, 2004.
    [15] Brookner E. Aspects of Modern Radar[M]. Norwood, Mass, USA: Artech House, 1988.
    [16] Nathanson F E, Reilly J P, and Cohen M N. Radar Design Principles: Signal Processing and the Environment[M]. Second Edition, Mendham, New Jersey: SciTech Publishing, Inc., 1999.
    [17] Van Trees H L. Detection, Estimation, and Modulation Theory: Part IV of Optimum Array Processing[M]. New Jersey, USA: Wiley, 2002.
    [18] 吴曼青. 数字阵列雷达及其进展[J]. 中国电子科学研究院学报, 2006, 1(1): 11–16. http://www.cnki.com.cn/Article/CJFDTOTAL-KJPL200601002.htm

    Wu Man-qing. The development of digital array radar[J]. Journal of China Academy of Electronics and Information Technology, 2006, 1(1): 11–16. http://www.cnki.com.cn/Article/CJFDTOTAL-KJPL200601002.htm
    [19] 王永良, 彭应宁. 空时二维自适应处理[M]. 北京: 清华大学出版社, 2000.
    [20] 何友, 关键, 彭应宁, 等. 雷达自动检测与恒虚警处理[M]. 北京: 清华大学出版社, 1999.
    [21] 何友, 修建娟, 张晶炜, 等. 雷达数据处理及应用[M]. 北京: 电子工业出版社, 2009.
    [22] Xu J, Yu J, Peng Y N, et al.. Space-time radon-Fourier transform and applications in radar target detection[J]. IET Radar, Sonar & Navigation, 2012, 6(9): 846–857.
    [23] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.
    [24] 刘永坦. 雷达成像技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 1999.
    [25] Cumming L G, Wong F H, 洪文, 等. 合成孔径雷达成像-算法与实现[M]. 北京: 电子工业出版社, 2007.

    Cumming L G, Wong F H, Hong Wen, et al.. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Beijing: Publishing House of Electronics Industry, 2007.
    [26] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. http://radars.ie.ac.cn/CN/abstract/abstract5.shtml

    Yang Jian-yu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. http://radars.ie.ac.cn/CN/abstract/abstract5.shtml
    [27] Jakowatz C V Jr, Wahl D E, Eichel P H, et al.. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. Boston, USA: Springer, 1996.
    [28] Du Lan, Liu Hong-wei, Bao Zheng, et al.. A two-distribution compounded statistical model for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2226–2238. doi: 10.1109/TSP.2006.873534
    [29] Li Neng-jing and Zhang Yi-ting. A survey of radar ECM and ECCM[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1110–1120. doi: 10.1109/7.395232
    [30] Carlson B D, Evans E D, and Wilson S L. Search radar detection and track with the Hough transform. I. System concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410
    [31] Carlson B D, Evans E D, and Wilson S L. Search radar detection and track with the Hough transform. II. detection statistics[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 109–115. doi: 10.1109/7.250411
    [32] Carlson B D, Evans E D, and Wilson S L. Search radar detection and track with the Hough transform. III. Detection performance with binary integration[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 116–125. doi: 10.1109/7.250412
    [33] Tonissen S M and Bar-Shalom Y. Maximum likelihood track-before-detect with fluctuating target amplitude[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 796–809. doi: 10.1109/7.705887
    [34] Barniv Y and Kella O. Dynamic programming solution for detecting dim moving targets Part II: Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, AES-23(6): 776–788. doi: 10.1109/TAES.1987.310914
    [35] Boers Y and Driessen H. Particle filter track-before-detect application using inequality constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1481–1487.
    [36] Boers Y and Driessen J N. Multitarget particle filter track before detect application[J]. IEEE Proceedings-Radar, Sonar and Navigation, 2004, 151(6): 351–357. doi: 10.1049/ip-rsn:20040841
    [37] Perry R P, Dipietro R C, and Fante R L. Coherent integration with range migration using Keystone formatting[C]. Proceedings of 2007 IEEE Radar Conference, Boston, MA, USA, 2007: 863–868.
    [38] Carretero-Moya J, Gismero-Menoyo J, Asensio-Lopez A, et al.. A coherent Radon transform for small target detection[C]. Proceedings of 2009 IEEE Radar Conference, Pasadena, CA, USA, 2009: 1–4.
    [39] Tao R, Zhang N, and Wang Y. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 12–22.
    [40] Yu Ji, Xu Jia, and Peng Ying-ning. Upper bound of coherent integration loss for symmetrically distributed phase noise[J]. IEEE Signal Processing Letters, 2008, 15: 661–664. doi: 10.1109/LSP.2008.2002724
    [41] Zhu Sheng-qi, Liao Gui-sheng, Yang Dong, et al.. A new method for radar high-speed maneuvering weak target detection and imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1175–1179. doi: 10.1109/LGRS.2013.2283887
    [42] Xing Meng-dao, Su Jun-hai, Wang Gen-yuan, et al.. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 214–224. doi: 10.1109/TAES.2011.5705671
    [43] Xu Jia, Yu Ji, Peng Ying-ning, et al.. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251
    [44] Xu Jia, Yu Ji, Peng Ying-ning, et al.. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645
    [45] Yu Ji, Xu Jia, Peng Ying-ning, et al.. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    [46] Xu Jia, Yu Ji, Peng Ying-ning, et al.. Focus-before-detect for radar target detection[C]. Proceedings of 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 430–433.
    [47] Xu J, Peng Y N, Xia X G, et al.. Focus-before-detection radar signal processing (I): Challenges and methods[J]. IEEE Aerospace and Electronic Systems Magazine (in press).
    [48] Xu J, Peng Y N, Xia X G, et al.. Focus-before-detection radar signal processing (II): Recent developments[J]. IEEE Aerospace and Electronic Systems Magazine (in press).
    [49] 许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3(2): 129–131. http://radars.ie.ac.cn/CN/abstract/abstract165.shtml

    Xu Jia, Peng Ying-ning, Xia Xiang-gen, et al.. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Radars, 2014, 3(2): 129–131. http://radars.ie.ac.cn/CN/abstract/abstract165.shtml
    [50] Xu Jia, Zhou Xu, Qian Li-chang, et al.. Hybrid integration for highly maneuvering radar target detection based on generalized radon-Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2554–2561. doi: 10.1109/TAES.2016.150076
    [51] Xu Jia, Xia Xiang-gen, Peng Shi-bao, et al.. Radar maneuvering target motion estimation based on generalized Radon-Fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/TSP.2012.2217137
    [52] Xu Jia, Dai Xi-zeng, Xia Xiang-gen, et al.. Optimizations of multisite radar system with MIMO radars for target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2329–2343. doi: 10.1109/TAES.2011.6034636
    [53] Qian L C, Xu J, Xia X G, et al.. Fast implementation of generalised Radon-Fourier transform for maneuvering radar target detection[J]. Electronics Letters, 2012, 48(22): 1427–1428. doi: 10.1049/el.2012.2255
    [54] Peng Shi-bao, Xu Jia, Xia Xiang-gen, et al.. Multiaircraft formation identification for narrowband coherent radar in a long coherent integration time[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2121–2137. doi: 10.1109/TAES.2015.140427
    [55] Qian Li-chang, Xu Jia, Xia Xiang-gen, et al.. Wideband-scaled Radon-Fourier transform for high-speed radar target detection[J]. IET Radar, Sonar & Navigation, 2014, 8(5): 501–512.
    [56] Xu Jia, Teng Long, Liu Feng, et al.. Radar target imaging using three-dimensional space Radon-Fourier transform[C]. Proceedings of 2014 International Radar Conference 2014, Lille, France, 2014: 1–6.
  • 加载中
图(3)
计量
  • 文章访问数:  3305
  • HTML全文浏览量:  977
  • PDF下载量:  1182
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-19
  • 修回日期:  2017-01-23
  • 网络出版日期:  2017-06-28

目录

    /

    返回文章
    返回