不同发射波形下多机协同探测雷达系统信号建模与性能分析

杨海峰 谢文冲 王永良

杨海峰, 谢文冲, 王永良. 不同发射波形下多机协同探测雷达系统信号建模与性能分析[J]. 雷达学报, 2017, 6(3): 267-274. doi: 10.12000/JR16142
引用本文: 杨海峰, 谢文冲, 王永良. 不同发射波形下多机协同探测雷达系统信号建模与性能分析[J]. 雷达学报, 2017, 6(3): 267-274. doi: 10.12000/JR16142
Yang Haifeng, Xie Wenchong, Wang Yongliang. Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform[J]. Journal of Radars, 2017, 6(3): 267-274. doi: 10.12000/JR16142
Citation: Yang Haifeng, Xie Wenchong, Wang Yongliang. Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform[J]. Journal of Radars, 2017, 6(3): 267-274. doi: 10.12000/JR16142

不同发射波形下多机协同探测雷达系统信号建模与性能分析

doi: 10.12000/JR16142
基金项目: 国家自然科学基金青年基金(61501505, 61501506),湖北省自然科学基金(2015CFB607)
详细信息
    作者简介:

    杨海峰(1986–),男,籍贯湖北省汉川市,现为空军预警学院信息与通信工程专业博士研究生,主要研究方向为空时自适应检测、阵列信号处理。E-mail: 18672954451@163.com

    谢文冲(1978–),男,籍贯山西省万荣县,2008年获国防科技大学信号与信息处理专业工学博士学位,现为空军预警学院雷达兵器运用工程军队重点实验室副教授,已在国内外刊物及学术会议上发表学术论文近百篇,主要研究方向为机载雷达信号处理、空时自适应信号处理等。E-mail: xwch1978@aliyun.com

    王永良(1965–),男,籍贯浙江省嘉兴市,教授,博士生导师,中国科学院院士,现为空军预警学院教授,主要研究方向为雷达信号处理、空时2维信号处理等,已发表论文270余篇,学术专著3部。E-mail: ylwangkjld@163.com

    通讯作者:

    王永良   ylwangkjld@163.com

  • 中图分类号: TN957.51

Modeling and Analysis of Multiple AEWs Coordinated Detection Radar System with Different Transmit Waveform

Funds: The China National Science Foundation (61501505, 61501506), HuBei Provincial Natural Science Foundation (2015CFB607)
  • 摘要: 多机协同探测雷达系统利用目标在不同机载雷达间的径向速度差异实现目标的有效检测,该系统已成为当前机载雷达领域的研究热点。该文首先建立了不同发射波形条件下多机协同探测雷达系统的信号模型,并给出了基于广义似然比(Generalized Likelihood Ratio Test, GLRT)准则的自适应检测器及其渐进统计分布特性,最后通过计算机仿真分析了3种特定发射波形下的运动目标检测性能。仿真结果表明多机协同探测雷达系统中发射波形的变化会严重影响雷达系统的运动目标检测性能,且相同发射波形的雷达系统对不同运动速度的目标检测性能也存在区别。

     

  • 图  1  双机协同探测杂波回波示意图

    Figure  1.  Clutter echo of bistatic airborne radar

    图  2  天线和目标位置示意图

    Figure  2.  Locations of antenna and target

    图  3  协方差矩阵已知且目标速度为(50, –100) m/s时的检测性能曲线

    Figure  3.  PD versus SNR for known covariance matrix with target velocity (50, –100) m/s

    图  4  目标速度为(50, –100) m/s时的检测性能曲线

    Figure  4.  PD versus SNR with target velocity (50, –100) m/s

    图  5  目标速度为(100, 100) m/s时的检测性能曲线

    Figure  5.  PD versus SNR with target velocity (100, 100) m/s

    图  6  目标速度为(100, 60) m/s时的检测性能曲线

    Figure  6.  PD versus SNR with target velocity (100, 60) m/s

    图  7  目标速度在x轴方向为零,检测概率与目标y轴速度变化的关系

    Figure  7.  Relationship between PD and the y-target velocity when the x-target velocity is 0 m/s

    图  8  目标速度在y轴方向为零,检测概率与目标x轴速度变化的关系

    Figure  8.  Relationship between PD and the x-target velocity when the y-target velocity is 0 m/s

    表  1  3种雷达体制下目标落入杂波区的情况

    Table  1.   Relationship between target and clutter of three radar systems with specific target velocity

    雷达体制 目标速度(m/s) 路径
    11 12 13 21 22 23 31 32 33
    PA (50, –100)
    (100, 100)
    (100, 60)
    PA-DMIMO (50, –100)
    (100, 100)
    (100, 60)
    CMIMO-DMIMO (50, –100)
    (100, 100)
    (100, 60)
    下载: 导出CSV
  • [1] Goodman N A and Bruyere D. Optimum and decentralized detection for multistatic airborne radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 806–813. doi: 10.1109/TAES.2007.4285374
    [2] Bruyere D and Goodman N. Adaptive detection and diversity order in multistatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(4): 1615–1623. doi: 10.1109/TAES.2008.4667736
    [3] Jung B W, Adve R S, Chun J, et al.. Detection performance using frequency diversity with distributed sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 1800–1813. doi: 10.1109/TAES.2011.5937266
    [4] Willis N J. Bistatic Radar[M]. Mendham, NJ, USA: SciTech Publishing, 2005.
    [5] Chernyak V. Multisite radar systems composed of MIMO radars[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(12): 28–37. doi: 10.1109/MAES.2014.7015713
    [6] Yang Haifeng, Liu Weijian, Xie Wenchong, et al.. General signal model of MIMO radar for moving target detection[J]. IET Radar, Sonar & Navigation, 2017, 11(4): 570–578.
    [7] Xu Haisheng, Wang Jian, Yuan Jian, et al.. Colocated MIMO radar transmit beamspace design for randomly present target detection[J]. IEEE Signal Processing Letters, 2015, 22(7): 828–832. doi: 10.1109/LSP.2014.2371241
    [8] Tang Bo, Naghsh M M, and Tang Jun. Relative entropy-based waveform design for MIMO radar detection in the presence of clutter and interference[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3783–3796. doi: 10.1109/TSP.2015.2423257
    [9] Jiu Bo, Liu Hongwei, Wang Xu, et al.. Knowledge-based spatial-temporal hierarchical MIMO radar waveform design method for target detection in heterogeneous clutter zone[J]. IEEE Transactions on Signal Processing, 2015, 63(3): 543–554. doi: 10.1109/TSP.2014.2366714
    [10] 张西川, 谢文冲, 张永顺, 等. 任意波形相关性的机载MIMO雷达杂波建模与分析[J]. 电子与信息学报, 2011, 33(3): 646–651. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201103025.htm

    Zhang Xichuan, Xie Wenchong, Zhang Yongshun, et al.. Modeling and analysis of the clutter on airborne MIMO radar with arbitrary waveform correlation[J]. Journal of Electronics & Information Technology, 2011, 33(3): 646–651. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201103025.htm
    [11] 张西川, 张永顺, 谢文冲, 等. 机载相干MIMO雷达杂波自由度估计研究[J]. 电子与信息学报, 2011, 33(9): 2125–2131. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201109017.htm

    Zhang Xichuan, Zhang Yongshun, Xie Wenchong, et al.. Research on the estimation of clutter rank for coherent airborne MIMO radar[J]. Journal of Electronics & Information Technology, 2011, 33(9): 2125–2131. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201109017.htm
    [12] Xie Wenchong, Zhang Baihua, Wang Yongliang, et al.. Range ambiguity clutter suppression for bistatic STAP radar[J]. EURASIP Journal on Advances in Signal Processing, 2013, 2013: 75. doi: 10.1186/1687-6180-2013-75
    [13] Xie Wenchong, Zhang Xichuan, Wang Yongliang, et al.. Estimation of clutter degrees of freedom for airborne multiple-input multiple-output-phased array radar[J]. IET Radar, Sonar & Navigation, 2013, 7(6): 652–657.
    [14] Xu Luzhou, Li Jian, and Stoica P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 927–939. doi: 10.1109/TAES.2008.4655353
    [15] Liu Weijian, Wang Yongliang, Liu Jun, et al.. Adaptive detection without training data in colocated MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2469–2479. doi: 10.1109/TAES.2015.130754
    [16] Gao Yongchan, Liao Guisheng, and Liu Weijian. High-resolution radar detection in interference and nonhomogeneous noise[J]. IEEE Signal Processing Letters, 2016, 23(10): 1359–1363. doi: 10.1109/LSP.2016.2597738
    [17] Liu Weijian, Liu Jun, Zhang Chen, et al.. Performance prediction of subspace-based adaptive detectors with signal mismatch[J]. Signal Processing, 2016, 123: 122–126. doi: 10.1016/j.sigpro.2015.12.021
    [18] Xu Jia, Dai Xizeng, Xia Xianggen, et al.. Optimizations of multisite radar system with MIMO radars for target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2329–2343. doi: 10.1109/TAES.2011.6034636
    [19] Ross S M. Introduction to Probability Models[M]. Fifth Edition, New York, USA: Academic Press, 2014.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3381
  • HTML全文浏览量:  692
  • PDF下载量:  747
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-06
  • 修回日期:  2017-05-10
  • 网络出版日期:  2017-06-28

目录

    /

    返回文章
    返回