Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

高分辨稀疏表示及其在雷达动目标检测中的应用

陈小龙 关键 何友 于晓涵

惠叶, 白雪茹. 基于RID序列的微动目标高分辨三维成像方法[J]. 雷达学报, 2018, 7(5): 548-556. doi: 10.12000/JR18056
引用本文: 陈小龙, 关键, 何友, 于晓涵. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239-251. doi: 10.12000/JR16110
Hui Ye, Bai Xueru. RID Image Series-based High-resolution Three-dimensional Imaging of Micromotion Targets[J]. Journal of Radars, 2018, 7(5): 548-556. doi: 10.12000/JR18056
Citation: Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110

高分辨稀疏表示及其在雷达动目标检测中的应用

DOI: 10.12000/JR16110
基金项目: 国家自然科学基金(61501487, 61401495, U1633122, 61471382, 61531020),山东省自然科学基金(2015ZRA06052),航空基金(20162084005, 20162084006, 20150184003),中国科协“青年人才托举工程”和“泰山学者”专项经费
详细信息
    作者简介:

    陈小龙(1985–),男,山东烟台人,博士,海军航空工程学院电子信息工程系讲师。承担国家自然科学基金等项目7项,发表学术论文50余篇,授权国家发明专利13项。获中国电子学会优秀博士学位论文奖、入选中国科协“青年人才托举工程” 。研究方向为雷达动目标检测、海杂波抑制、雷达信号精细化处理等。E-mail: cxlcxl1209@163.com

    关 键(1968–),男,辽宁锦州人,教授,博士生导师,海军航空工程学院电子信息工程系主任。承担973、国家自然科学基金、国防预研等项目20余项。发表论文140余篇,出版学术专著2部,获国家发明专利22项。获全国优秀博士学位论文奖,获得国家科技进步二等奖1项、军队科技进步一等奖2项,山东省技术发明一等奖1项; “百千万人才工程” 国家级人选,入选教育部新世纪优秀人才支持计划,“泰山学者” 特聘教授。主要研究方向为雷达目标检测与跟踪、侦察图像处理和信息融合。E-mail: guanjian96@tsinghua.org.com

    何 友(1956–),男,吉林磐石人,中国工程院院士,教授,博士生导师,海军航空工程学院信息融合研究所所长。主要研究领域有雷达目标检测方法、多传感器信息融合、多目标跟踪、分布检测理论及应用、军事大数据等

    于晓涵(1991–),女,河北沧州人,博士生,海军航空工程学院信息融合研究所。研究方向为雷达动目标检测、海杂波抑制、雷达视频跟踪等。E-mail: 2953164562@qq.com 

    通讯作者:

    陈小龙   cxlcxl1209@163.com

    关键   guanjian96@tsinghua.org.com

  • 中图分类号: TN957.51

High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection

Funds: The National Natural Science Foundation of China (61501487, 61401495, U1633122, 61471382, 61531020), The Natural Science Foundation of Shandong Province (2015ZRA06052), The Aeronautical Science Foundation of China (20162084005, 20162084006, 20150184003), The Young Elite Scientist Program of CAST and Special Funds of Taishan Scholars
  • 摘要: 复杂背景下稳健高效的低可观测动目标检测始终是雷达信号处理领域的研究热点和难点,一方面,强杂波背景和目标复杂运动使得信号微弱,时频域难以区分;另一方面,相参积累算法复杂,长时间积累运算量较大,如何利用有限的雷达资源提高雷达探测性能成为亟需解决的问题。高分辨稀疏表示技术从信号稀疏性角度出发区分杂波和动目标,是传统变换域动目标检测技术的拓展,具有高时频分辨率、对噪声不敏感、稳健性高以及适于多分量信号分析的优势,有广阔应用前景。该文重点从应用角度进行归纳总结,系统回顾了雷达动目标检测的常规方法,然后对稀疏表示在雷达杂波特性分析、抑制、动目标检测、特征提取、时频分析等方面的应用进行了初步总结和归纳,对研究方向进行展望,最后结合实测数据和已有成果给出了部分处理结果。

     

  • 当目标沿雷达视线(Light Of Sight, LOS)方向运动时,其回波信号的载频将发生偏移,即产生多普勒现象。除目标整体运动外,若目标或目标上的某些结构还存在独立的振动或旋转,则称其为微动。微动会在目标主体运动对应的主多普勒谱周围产生边带,即产生微多普勒效应[1]。直升机、飞机旋转叶片、小型卫星和空间碎片等航空航天目标的典型微动包括自旋、进动和章动[2]等。

    对于空间微动目标,其高分辨雷达回波[3,4]蕴含着散射中心2维或3维分布等结构信息,同时包含着自旋频率、进动频率及进动角等运动信息,上述信息为准确的目标分类、识别提供了重要支撑。目前,典型空间微动目标的高分辨雷达成像与微动参数估计方法研究[59]已受到雷达成像与雷达自动目标识别领域的广泛关注。

    空间微动目标的高分辨成像方法包括参数化方法[1014]与非参数化[1521]方法两类。其中,参数化成像方法首先建立各种微动形式的参数化模型,进而采用基于模型的参数估计方法实现高分辨成像。主要包括基于固定散射中心模型的成像方法[10,2224]及基于滑动散射中心模型[11,13]的进动目标成像方法。对于章动等复杂微动形式,需要建立非常复杂的参数化模型,并实现大量未知参数的准确求解,由于目标的散射中心坐标与微动参数耦合,因此求解运算量很大。非参数化成像方法则主要包括自适应时频分析[25]与散射中心航迹关联[16,17,2628]成像两类。与参数化成像方法相比,非参数化成像方法具有各种微动形式具有鲁棒性,能够避免由于模型失配而引起的较大误差,计算效率较高。

    对于非参数化方法,基于航迹矩阵分解的成像方法[17]可实现自旋、进动、章动等微动目标的高分辨成像。该类方法的关键步骤之一是在距离-慢时间域实现散射中心航迹的精确估计和关联。现有方法采用卡尔曼滤波器和最小欧氏距离准则,实现基于1维斜距信息的航迹关联[17,29],当散射中心回波包络交叉点较多、相距较近时容易产生较大的关联误差。此外,获取高质量的高分辨距离像(High Resolution Range Profile, HRRP)也是非参数化成像的关键步骤。

    为了解决上述问题,本文提出一种基于距离-瞬时多普勒(Range-Instantaneous Doppler, RID)像序列的微动目标高分辨3维成像新方法。该方法充分利用散射中心在距离-瞬时多普勒域2维分布比距离-慢时间域1维分布可分性更强等特性,提出基于RID像序列的散射中心航迹关联方法,提高了航迹交叉点散射中心的可分性。进而通过带约束条件的矩阵分解求得散射中心3维分布和等效雷达视线矩阵,实现空间微动目标高分辨3维成像。最后,仿真数据证明了算法的有效性。

    本文结构如下:第2节介绍了RID序列的生成方法;第3节研究了基于RID序列的航迹矩阵关联方法,以及基于现代谱估计的航迹矩阵精估计方法;第4节研究了基于航迹矩阵分解的微动目标高分辨3维成像方法;第5节以锥体章动目标为例,给出目标航迹关联及3维成像结果;最后一节进行了总结。

    对于信号 s(t) ,其短时傅里叶变换(STFT, Short-Time Fourier Transform)满足[15,30]

    STFT(τ,ω)=s(t)w(tτ)exp{jωt}dt (1)

    其中, ω 表示角频率, τ 表示时延, w() 为窗函数。

    为实现散射中心航迹的准确关联,需要获得其距离-瞬时多普勒像序列。假设雷达发射大时宽-带宽积脉冲信号,距离脉压后回波共包含 Nr 个距离单元,则对存在回波的距离单元 rn ( n[N1,N2] , [N1,N2] 为存在回波的距离单元区间)分别做STFT以得到其时频图 In(fd,tm) ,其中 fd 表示多普勒, tm 表示慢时间。随后,将时频图堆成3维矩阵 Q(rn,fd,tm) 。最后,沿时间轴 tm=ti ( i[1,Na] , Na 为方位单元数)取出2维矩阵切片,即得到 ti 时刻的RID像。连续变换 ti 即可获得RID像序列。该过程示意图如图1所示。

    图  1  RID像生成过程示意图
    Figure  1.  The process of RID image series generation

    为了利用RID像序列实现散射中心航迹关联,需要提取每幅图像中散射中心的2维坐标。分水岭(watershed)算法[31]能够精确定位图像中的微弱边缘,并获得封闭且连续的分割曲线,因此适用于提取RID像中的散射中心支撑域。此外,相比于基于统计学的图像分割算法,该算法计算量小且分割较为准确,适用于图像数据的实时处理。因此,本文首先使用采用分水岭方法对RID像进行图像分割以获得每个散射中心对应的支撑域,然后计算每个支撑域对应的散射中心质心,并将此质心作为散射中心2维坐标的粗估计。基于watershed方法的RID像分割过程实现方法如下:

    Step1:将原始图像归一化后,通过设定门限值将其转化为二值图像;

    Step2:计算二值图像中每个像素点到其最近非零点的距离(如果像素本身非零,则其本身为最近的非零点,因此距离为0),用于替代该像素点的像素值,得到矩阵 D

    Step3:令 D=D ,得到梯度图像;

    Step4:采用分水岭方法对Step3中得到的梯度图像进行分割[31]

    散射中心分割完成后,提取分割后每个散射中心的支撑域。具体步骤为:首先将分割后图像的1值和0值点赋为0,并将其他点赋为255;然后求二值图像的连通域;最后取其边界得到微动目标每个散射中心的支撑域。最后,将每个散射中心对应支持区的质心作为RID图像中每个散射中心2维坐标的估计。其中,质心计算方法如下:

    xc=uvuf(u,v)uvf(u,v),yc=uvvf(u,v)uvf(u,v) (2)

    其中, f(u,v) 表示 (u,v) 点处的像素值,u, v分别表示像素点的横坐标和纵坐标。

    将每一时刻的RID像都做上述处理,则可获得散射中心在各个时刻对应的坐标。

    由于微动目标具有惯性,因此认为相邻两幅距离-瞬时多普勒图像中同一散射中心的坐标连续变化,从而基于最近邻法实现航迹关联。设第 i ( i[1,Na] )幅RID图像中的第 j ( j[1,P] , P 为散射中心个数)个散射中心的坐标向量为 aij ,计算该点与第 i+1 幅RID图像中各个散射中心坐标向量的欧氏距离,选取与其欧氏距离最小的散射中心作为与该点关联的散射中心,即计算式(3):

    minjaijai+1,j2 (3)

    依次计算RID序列中相邻两幅图像中各散射中心的关联点,从而实现RID图像中各散射中心的关联,并得到微动目标航迹矩阵 W 的粗估计。该矩阵的每一列对应一个散射中心在观测时间内的瞬时斜距。具体而言,基于RID序列的航迹关联实现方法如下:

    Step1:初始化航迹矩阵 WNa×P ,令所有元素都为0;

    Step2:将 P 个散射中心的初始时刻瞬时斜距写入 WNa×P 的第1行;

    Step3:令 i=1 , j=1 ,计算第 i 幅RID像中第 j 个散射中心与第 i+1 幅RID像中所有散射中心的欧氏距离,根据式(3)将最小欧氏距离对应的散射中心瞬时斜距写入 WNa×P(i+1,j)

    Step4:令 j=j+1 ,重复step3直到 j=P ,实现第 i 幅RID像与第 i+1 幅RID像的2维航迹关联;

    Step5:令 i=i+1 ,重复step3—step4直到 i=Na1 ,获得矩阵 WNa×P

    由于RID像的距离分辨率为 ρr=c/2B ,对于X波段雷达而言通常为10–2 m量级,精度较低;而利用散射中心支撑域的质心对其2维坐标进行近似也会导致较大误差,从而使航迹矩阵产生抖动,影响微动目标3维成像的精度。针对该问题,在获得散射中心2维关联结果的基础上,可以进一步采用Root-MUSIC等谱估计方法[32]对散射中心的瞬时斜距进行精估计,并对航迹矩阵进行修正,从而提高对微动目标散射中心3维坐标估计的准确性。

    微动目标经运动补偿后的回波信号可表示为:

    \begin{aligned} {s_0}\left( {f,{t_{\rm{m}}}} \right) =& \sum\limits_p {A_{{p}}}{\rm{rect}}\left( {\frac{f}{B}} \right)\\ {\rm{}}& \cdot \exp \left( {{\rm j}\frac{{4{{π}} }}{c}\left( {{f\!_{\rm{c}}} + f} \right)\Delta {R_{{p}}}\left( {{t_{\rm{m}}}} \right)} \right) \end{aligned} (4)

    其中, p \in \left[ {1,{P}} \right] 表示散射中心序号, {A_{{p}}} 表示其幅度, B 为带宽, c 为光速, {f\!_{\rm{c}}} 表示载频, {R_{{p}}} 表示第 p 个散射中心与参考点之间的瞬时斜距。若忽略距离窗,则式(4)可被改写为

    {s_1}\left( {n,{t_{\rm{m}}}} \right) = \sum\limits_p {{{A'}\!\!_{{p}}}\exp \left( {{\rm j}{\omega _{{p}}}n} \right)} (5)

    其中, {A'\!\!_{{p}}} = {A_{{p}}}\exp \Bigr( {{\rm j}4{{π}} \left( {{f\!_{\rm{c}}} - B/2} \right)\Delta {R_{{p}}}\left( {{t_{\rm{m}}}} \right)/c} \Bigr) ,散射中心对应的角频率为 {\omega _{{p}}} = 4{{π}} \Delta f\Delta {R_{{p}}}\left( {{t_{\rm{m}}}} \right)/c , \Delta f = B/{N_{\rm{r}}} , {N_{\rm{r}}} 为距离单元数, n \in \left[ {1,{N_{\rm{r}}}} \right] 。接下来,对每次距离向回波精确估计 {\omega _{{p}}} 以求出 \Delta {R_{{p}}}\left( {{t_{\rm{m}}}} \right) ,从而得到抑制旁瓣和噪声后的高质量高分辨1维距离像(HRRP)。

    为了采用Root-MUSIC方法,首先构造距离回波的协方差矩阵:

    \hat {{R}} = \frac{1}{{{N_{\rm{r}}} - m}}\sum\limits_{n = m}^{{N_{\rm{r}}}} {{{\tilde {{S}}}_{\rm{r}}}\left( {n,{t_{\rm m}}} \right)\tilde {{S}}_1^*\left( {n,{t_{\rm m}}} \right)} (6)

    其中, m 表示窗长,且

    \begin{align} \tilde {{S}}_{\rm{r}}\left( {n,{t_{\rm{m}}}} \right) =& \Bigr[ {{s_1}\left( {n,{t_{\rm{m}}}} \right)}\ {{s_1}\left( {n - 1,{t_{\rm{m}}}} \right)}\ ·\!·· \\ {\rm{}}& \quad \ {s_1}\left( {n - m + 1,{t_{\rm{m}}}} \right) \Bigr]^{\rm{T}} \end{align} (7)

    通过Z变换找到与单位元距离最近的P个根可以求得角频率 {\omega _{{p}}} 。随后,由 \Delta {R_{{p}}}\left( {{t_{\rm{m}}}} \right) = {\omega _{{p}}}c/4{{π}} \Delta f 得到精估计的瞬时斜距 \Delta {R_{{p}}}\left( {{t_{\rm{m}}}} \right) 。最后,通过最小欧氏距离准则将 {t_{\rm{m}}} 时的瞬时斜距写入 {{{W}}\!_{{{{N}}_{\rm{a}}} \times {{P\,}}}} 的相应行中,即可得到精估计的航迹矩阵 {{{W}}'\!\!_{{{{N}}_{\rm{a}}} \times {{P}}}} 。此外,当回波的信噪比较低时,可以通过构造观测字典,采用噪声稳健的稀疏信号重构方法[33,34]获得HRRP,并实现航迹矩阵的精估计。

    根据运动的相对性,对于微动目标上的固定散射中心,其在距离-慢时间域的航迹矩阵可以表示为:

    {{{W}}\!_{{{{N}}_{\rm{a}}} \times {{P}}}} = {{{R}}_{{{{N}}_{\rm{a}}} \times 3}}{{{S}}_{3 \times {{P}}}} (8)

    其中, P 为散射中心个数, {N_{\rm{a}}} 为方位单元数,矩阵 {{R}} 表示不同时刻的等效雷达视线矩阵, {{S}} 表示目标的散射中心坐标矩阵。根据式(8)可知,从 {{W}} 中重构矩阵 {{S}} 则可得到目标3维散射中心坐标。本文采用基于矩阵奇异值分解的方法重构矩阵 {{S}} [17,21]

    利用矩阵奇异值分解法,航迹矩阵可以分解为 {{{W}}\!_{1{{{N}}_{\rm{a}}} \times {{K}}}} = {{{U}}\!_{{{{N}}_{\rm{a}}} \times {{K}}}}{{{Σ}} _{{{K}} \times {{K}}}}{{V}}_{{{K}} \times {{K}}}^{\rm{T}} 。对于3维微动,根据矩阵秩的特性, {{{Σ}} _{{{K}} \times {{K}}}} 的前3个奇异值较大,而其余奇异值趋近于零。因此可做如下近似:

    \begin{array}{l} {{{W}}\!_1} = \left[ {{{\left( {{{{U}}\!_1}} \right)}_{{{{N}}_{\rm{a}}} \times 3}},{{\left( {{{{U}}\!_2}} \right)}_{{{{N}}_{\rm{a}}} \times \left( {{{K}} - 3} \right)}}} \right]\left[ {\begin{array}{*{20}{l}} {{{\left( {{{{Σ}} _1}} \right)}_{3 \times 3}}} & 0\\ \quad \ 0 & 0 \end{array}} \right]\\ \quad\quad\quad \cdot\left[ \begin{array}{l} {\quad \left( {{{{V}}\!_1}} \right)_{3 \times {{K}}}}\\ {\left( {{{{V}}\!_2}} \right)_{\left( {{{K}} - 3} \right) \times {{K}}}} \end{array} \right] \approx {{{U}}\!_1}\left( {{{{Σ}} _1}{{{V}}\!_1}} \right)\\ \quad\quad= {{R}}'{{S}}' \end{array} (9)

    其中,近似后得到 {{R}}' = {{{U}}\!_1} , {{S}}' = {{{Σ}} _1}{{{V}}\!_1} 。并且对于任意可逆矩阵 {{{A}}_{3 \times 3}} , {{R}}'{{S}}' = \left( {{{R}}'{{A}}} \right)\left( {{{{A}}^{ - 1}}{{S}}'} \right) 成立。

    根据 {{R}} 的定义可知 {{R}} 各行构成的行向量的模为1。将 {{R}} 用行向量的形式表示为 {{R}} = {\left[ {{{{l}}_1}\;{{{l}}_2}\; ·\!·\!· \;{{{l}}_{{{{N}}_{\rm{a}}}}}} \right]^{\rm{T}}} ,则下列等式成立:

    {{{l}}_n}{{A}}{{{A}}^{\rm{T}}}{{l}}_n^{\rm{T}} = {{I}},\;\;\;\;n \in \left[ {1,{N_{\rm{a}}}} \right] (10)

    其中, {{I}} 是单位矩阵。估计值 {\hat {{A}\,}} 为式(10)的最小均方解,则 {{\hat{{A}\,}}^{ - 1}}{{S}}' 相当于 {{S}} 的等距映射。

    对于任意的正交矩阵 {{{A}}_1} ,满足下列关系:

    {{R}}{{S}} = \left(\! {{{R}}'{\hat{{A}\,}}{{{A}}_1}} \!\right)\left(\! {{{A}}_1^{\rm{T}}{{{\hat{{A}\,}}}^{ - 1}}{{S}}'} \!\right),\;\;{\rm{s}}.{\rm{t}}.\; {{{A}}_{1}}{{A}}_1^{\rm{T}} = {{I}} (11)

    其中, {{{R}}'{\hat{{A}\,}}} {{{A}}_1} 相乘相当于旋转雷达视线, {{\hat{{A}\,}}^{ - 1}}{{S}}' {{A}}_1^{\rm{T}} 相乘相当于散射中心关于原点旋转。由于满足 {{{A}}_1}{{A}}_1^{\rm{T}} = {{I}} ,根据式(12)计算矩阵 {{{A}}_1}

    {\hat{{l}}}{{{A}}_1} = {{\hat{{l}}}_0} (12)

    其中, {{\hat{{l}}}_0} 是初始时刻雷达视线方向矢量,令 {\hat{{A}\,}}{{\hat{{A}\,}}^{\rm{T}}} = \left( {\begin{array}{*{20}{c}} {{{{l}}_{{1}}}}&{{{{l}}_{{2}}}} \\ {{{{l}}_{{2}}}}&{{{{l}}_{{3}}}} \end{array}} \right) ,则 {\hat{{l}}} = \left[ {\begin{array}{*{20}{c}} {{{l}}_{{1}}} \\ {{{l}}_{{2}}} \\ {{{l}}_{{3}}} \\ \end{array}} \right] 。结合矩阵奇异值分解所得的 {{R}}' , {{S}}' 以及估计出的矩阵 {\hat{{A}\,}} ,可以得到等效雷达视线矩阵为 {{R}} = {{{R}}'{\hat{{A}\,}}}{{{A}}_1} ,散射中心3维坐标矩阵为 {{S}} = {{A}}_1^{\rm{T}}{{\hat{{A}\,}}^{ - 1}}{{S}}'

    通过上述航迹矩阵分解方法可以获得微动目标3维散射中心分布,进而实现空间微动目标高分辨3维成像。整体算法流程图如图2所示。

    图  2  基于航迹矩阵分解的微动目标高分辨成像算法流程图
    Figure  2.  The flow chart for high-resolution imaging of micro-motion targets based on trajectory matrix decomposition

    本节采用仿真数据对所提算法进行验证。微动目标散射中心分布如图3(a)所示,该目标由9个散射中心组成。仿真参数为:带宽2 GHz,载频10 GHz,脉冲重复频率PRF=2000 Hz,观测时间为1 s。章动目标自旋角频率为1 Hz,锥旋角频率为0.4 Hz,摆动角频率为0.1 Hz,摆动幅度为5°。回波信号的信噪比为20 dB。

    距离脉压后的目标回波如图3(b)所示,其中最底部曲线对应锥顶散射中心。9个散射中心航迹交叉点较多,基于1维距离像关联难度较大。采用watershed方法从图3(c)所示RID像中提取散射中心支撑域的结果如图3(d)所示,进而从中计算出各散射中心坐标,如图3(e)所示,其中蓝色圆圈表示散射中心支撑域轮廓,红色标记表示通过计算得到的散射中心坐标。由图可知,散射中心轮廓清晰,分割效果良好。基于RID像序列的距离-多普勒-慢时间3维关联结果如图3(f)所示,在距离-时间维的关联结果如图3(g)所示,其中不同颜色代表不同散射中心的航迹。由该图可知,该方法能够有效避免交叉点处关联错误等问题,获得准确的散射中心航迹关联结果。

    利用Root-MUSIC的谱估计方法对航迹矩阵进行精估计,结果如图3(h)所示。最后,采用航迹矩阵分解法获得微动目标3维散射中心分布的结果如图4(a)所示,其中红色星号表示估计值,蓝色圆圈表示真实值。可以看出,成像结果与真实散射中心分布一致,从而证明了本文所提算法的有效性。等效雷达视线矩阵估计结果如图4(b)所示。

    图  4  章动目标3维成像结果
    Figure  4.  3D image of the nutation target

    为测试所提成像方法的抗噪性能,在保持其他参数不变的条件下,给目标回波中分别加入信噪比为0 dB, 5 dB, 10 dB, 15 dB, 20 dB的高斯白噪声。在每个信噪比下做50次蒙特卡洛实验,并按照式(13)计算均方根误差(Root Mean Square Error, RMSE):

    {\rm{RMSE}} = \sqrt {\frac{{\displaystyle\sum\limits_{n = 1}^{{N_{\rm{m}}}} {{{\sum\limits_{p = 1}^{P} {\left[ {{{\left( {S_{{{x}},p}^n - T_{{{x}},p}^n} \right)}^2} + {{\left( {S_{{{y}},p}^n - T_{{{y}},p}^n} \right)}^2} + {{\left( {S_{{{z}},p}^n - T_{{{z}},p}^n} \right)}^2}} \right]} }\biggr/ {P}}} }}{{{N_{\rm{m}}}}}} (13)

    其中, n \in \left[ {1,{N_{\rm{m}}}} \right] , {N_{\rm{m}}} 为蒙特卡洛实验次数, p \!\in\! \left[ {1,{P}}\, \right] , {P} 为散射中心个数, \left[ {T_{{{x}},p}^n,T_{{{y}},p}^n,T_{{{z}},p}^n} \right] \left[ {S_{{{x}},p}^n,S_{{{y}},p}^n,S_{{{z}},p}^n} \right] 分别表示第 n 次蒙特卡洛实验中第 p 个散射点的真实坐标和估计坐标。最终,不同信噪比下的RMSE曲线如图5所示,可以看出,RMSE随着SNR的增加而降低。

    图  5  均方根误差随信噪比的变化曲线
    Figure  5.  Variation of the RMSE with SNR

    针对传统参数化成像方法对复杂微动目标建模困难,未知参数求解运算量大等问题,本文提出一种基于RID图像序列的微动目标非参数化高分辨3维成像方法。该方法首先基于watershed法对RID图像进行分割提取散射中心,进而基于最近邻准则对散射中心航迹进行关联,接着通过Root-MUSIC方法实现航迹矩阵的精估计。最终,通过航迹矩阵分解实现微动目标的高分辨3维成像。该方法有效避免了参数化成像方法未知参数求解困难,易产生模型失配等不足。同时,2维关联方法克服了散射中心航迹交叉严重时,传统1维关联方法引起的关联误差,实现了复杂微动目标的高分辨3维成像。

    在未来工作中,将研究低信噪比环境下的散射中心关联方法及非参数化微动目标高分辨3维成像方法,并进一步研究基于高分辨图像及等效雷达视线矩阵的微动目标特征提取及识别方法。

  • 图  1  FRFT对LFM信号检测原理框图

    Figure  1.  Diagram of LFM signal detection via FRFT

    图  2  FRFT域动目标检测原理框图[6]

    Figure  2.  Flowchart of moving target detection in FRFT domain[6]

    图  3  海上机动目标的距离和多普勒徙动(X波段CSIR雷达数据)

    Figure  3.  Range and Doppler migrations of marine maneuvering target (X-band CISR data)

    图  4  基于长时间相参积累的高速高机动目标检测方法

    Figure  4.  High-speed and maneuvering target detection based on long-time coherent integration

    图  5  利用目标加速度信息的长时间相参积累检测方法(S波段雷达数据)[13]

    Figure  5.  Long-time coherent integration-based detection method using acceleration of target (S-band radar data)[13]

    图  6  典型海上微动目标回波特性

    Figure  6.  Properties of some typical marine targets with micromotion

    图  7  基于MCA海上微动目标检测和特征提取处理结果(S波段雷达数据,Pfa=10–4)[42]

    Figure  7.  Detection and signature extraction of marine micromotion target via MCA (S-band radar data, Pfa=10–4)[42]

    图  8  FFT与SFT的运算量对比分析(美国MIT实验室)

    Figure  8.  Comparison of computation cost between FFT and SFT (MIT Laboratory)

    图  9  传统时频分析和稀疏时频分析技术的人体运动目标回波分析结果对比

    Figure  9.  Comparison of human movement analysis between traditional TFD and STFD

    图  10  基于STFD的海上动目标检测结果对比(X波段CSIR雷达数据TFC17_006,切面图,Pfa=10–4)

    Figure  10.  Marine moving target detection comparisons via different STFDs (X-band CSIR datasets TFC17_006, slice plot, Pfa=10–4)

    表  1  检测性能和计算时间对比(仿真机动目标+TFC17_006海杂波,采样点1024, Pfa=10–4)

    Table  1.   Comparison of detection performance and computational burden (Simulated moving target+TFC17_006 sea clutter, sampling number 1024, Pfa=10–4)

    检测方法 MTD SFT FRFT SFRFT FRAF SFRAF
    稀疏信号分量 13 10 2
    Pd (SCR= –5 dB) 62.47% 68.35% 68.74% 70.21% 85.69% 89.35%
    计算时间* (ms) 4.69 5.73 12.54 8.92 14.61 10.52
    “*”:计算机配置:Intel Core i7-4790 3.6 GHz CPU; 16 G RAM; Matlab R2014a,计算时间为算法1次运算时间
    下载: 导出CSV
  • [1] 杨建宇. 雷达技术发展规律和宏观趋势分析[J]. 雷达学报, 2012, 1(1): 19–27. http://radars.ie.ac.cn/CN/abstract/abstract5.shtml

    Yang Jian-yu. Development laws and macro trends analysis of radar technology[J]. Journal of Radars, 2012, 1(1): 19–27. http://radars.ie.ac.cn/CN/abstract/abstract5.shtml
    [2] 何友, 黄勇, 关键, 等. 海杂波中的雷达目标检测技术综述[J]. 现代雷达, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001

    He You, Huang Yong, Guan Jian, et al.. An overview on radar target detection in sea clutter[J]. Modern Radar, 2014, 36(12): 1–9. doi: 10.3969/j.issn.1004-7859.2014.12.001
    [3] 陈小龙, 关键, 何友. 微多普勒理论在海面目标检测中的应用及展望[J]. 雷达学报, 2013, 2(1): 123–134. http://radars.ie.ac.cn/CN/abstract/abstract68.shtml

    Chen Xiao-long, Guan Jian, and He You. Applications and prospect of micro-motion theory in the detection of sea surface target[J]. Journal of Radars, 2013, 2(1): 123–134. http://radars.ie.ac.cn/CN/abstract/abstract68.shtml
    [4] Zuo Lei, Li Ming, Zhang Xiao-wei, et al.. An efficient method for detecting slow-moving weak targets in sea clutter based on time-frequency iteration decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3659–3672. doi: 10.1109/TGRS.2012.2224665
    [5] 许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3(2): 129–141. http://radars.ie.ac.cn/CN/abstract/abstract165.shtml

    Xu Jia, Peng Ying-ning, Xia Xiang-gen, et al.. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Radars, 2014, 3(2): 129–141. http://radars.ie.ac.cn/CN/abstract/abstract165.shtml
    [6] 陈小龙, 关键, 黄勇, 等. 分数阶傅里叶变换在动目标检测和识别中的应用: 回顾和展望[J]. 信号处理, 2013, 29(1): 85–97. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201301013.htm

    Chen Xiao-long, Guan Jian, Huang Yong, et al.. Application of fractional Fourier transform in moving target detection and recognition: Development and prospect[J]. Journal of Signal Processing, 2013, 29(1): 85–97. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201301013.htm
    [7] Donoho David L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [8] 李刚, 夏向根. 参数化稀疏表征在雷达探测中的应用[J]. 雷达学报, 2016, 5(1): 1–7. http://radars.ie.ac.cn/CN/abstract/abstract323.shtml

    Li Gang and Xia Xiang-gen. Parametric sparse representation and its applications to radar sensing[J]. Journal of Radars, 2016, 5(1): 1–7. http://radars.ie.ac.cn/CN/abstract/abstract323.shtml
    [9] 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651–1662. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201107030.htm

    Jiao Licheng, Yang Shuyuan, Liu Fang, et al.. Development and prospect of compressive sensing[J]. Acta Electronic Sinica, 2011, 39(7): 1651–1662. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201107030.htm
    [10] 宋杰, 何友, 关键. 一种双模杂波抑制的准自适应MTI系统[J]. 兵工学报, 2009, 30(5): 546–550. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO200905008.htm

    Song Jie, He You, and Guan Jian. A near adaptive MTI system for bimodal clutter suppression[J]. Acta Armamentarii, 2009, 30(5): 546–550. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO200905008.htm
    [11] 马晓岩, 袁俊泉. 基于离散小波变换提高MTD检测性能的仿真分析[J]. 信号处理, 2001, 17(2): 148–151. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN200102009.htm

    Ma Xiao-yan and Yuan Jun-quan. Simulation analysis for MTD detectability improvement using the discrete wavelet transform (DWT)[J]. Journal of Signal Processing, 2001, 17(2): 148–151. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN200102009.htm
    [12] Guan Jian, Chen Xiao-long, et al.. Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter[J]. IET Radar, Sonar & Navigation, 2012, 6(5): 389–401. doi: 10.1049/iet-rsn.2011.0030
    [13] Chen Xiao-long, Guan Jian, Liu Ning-bo, et al.. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transaction on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [14] 庞存锁. 基于离散多项式相位变换和分数阶傅里叶变换的加速目标检测算法[J]. 电子学报, 2012, 40(1): 184–188. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201201031.htm

    Pang Cun-suo. An accelerating target detection algorithm based on DPT and fractional Fourier transform[J]. Acta Electronic Sinica, 2012, 40(1): 184–188. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201201031.htm
    [15] Yonina C Eldar, Pavel Sidorenko, Dustin G Mixon, et al.. Sparse phase retrieval from short-time Fourier measurements[J]. IEEE Signal Processing Letters, 2015, 22(5): 638–642. doi: 10.1109/LSP.2014.2364225
    [16] Saad Qazi, Apostolos Georgakis, Lampros K Stergioulas, et al.. Interference suppression in the Wigner distribution using fractional Fourier transformation and signal synthesis[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 3150–3154. doi: 10.1109/TSP.2007.893971
    [17] Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1511–1515. doi: 10.1109/78.388866
    [18] Jérôme Gilles. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999–4010. doi: 10.1109/TSP.2013.2265222
    [19] 陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用[M]. 北京: 清华大学出版社, 2009.

    Tao Ran, Deng Bing, and Wang Yue. Fractional Fourier Transform and Its Applications[M]. Beijing: Tsinghua University Press, 2009.
    [20] Feng Qiang and Li Bing-zhao. Convolution and correlation theorems for the two-dimensional linear canonical transform and its applications[J]. IET Signal Processing, 2016, 10(2): 125–132. doi: 10.1049/iet-spr.2015.0028
    [21] Liu Sheng-heng, Shan Tao, Tao Ran, et al.. Sparse discrete fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6582–6595. doi: 10.1109/TSP.2014.2366719
    [22] Tao Ran, Li Xue-mei, Li Yan-lei, et al.. Time-delay estimation of chirp signals in the fractional Fourier domain[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2852–2855. doi: 10.1109/TSP.2009.2020028
    [23] Tao Ran, Zhang Feng, and Wang Yue. Fractional power spectrum[J]. IEEE Transactions on Signal Processing, 2008, 56(9): 4199–4206. doi: 10.1109/TSP.2008.925579
    [24] Tao Ran, Li Yan-lei, and Wang Yue. Short-time fractional Fourier transform and its applications[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2568–2580. doi: 10.1109/TSP.2009.2028095
    [25] 沙学军, 史军, 张钦宇, 等. 分数傅里叶变换原理及其在通信系统中的应用[M]. 北京: 人民邮电出版社, 2013.

    Sha Xue-jun, Shi Jun, Zhang Qin-yu, et al.. Fractional Fourier Transform Theory and Its Applications in Communication Systems[M]. Beijing: Post & Telecom Press, 2013.
    [26] Liu Xiao-ping, Shi Jun, Xiang Wei, et al.. Sampling expansion for irregularly sampled signals in fractional Fourier transform domain[J]. Digital Signal Processing, 2014, 34: 74–81. doi: 10.1016/j.dsp.2014.08.004
    [27] Shi Jun, Xiang Wei, Liu Xiaoping, et al.. A sampling theorem for the fractional Fourier transform without band-limiting constraints[J]. Signal Processing, 2014, 98: 158–165. doi: 10.1016/j.sigpro.2013.11.026
    [28] Chen Xiao-long, Guan Jian, Bao Zhong-hua, et al.. Detection and extraction of target with micro-motion in spiky sea clutter via short-time fractional Fourier transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1002–1018. doi: 10.1109/TGRS.2013.2246574
    [29] Xing Meng-dao, Su Jun-hai, Wang Gen-yuan, et al.. New parameter estimation and detection algorithm for high speed small target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 214–224. doi: 10.1109/TAES.2011.5705671
    [30] 吴孙勇, 廖桂生, 朱圣棋, 等. 提高雷达机动目标检测性能的二维频率域匹配方法[J]. 电子学报, 2012, 40(12): 2415–2420. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201212010.htm

    Wu Sun-yong, Liao Gui-sheng, Zhu Sheng-qi, et al.. A new method for radar maneuvering target detection based on matched filtering in two-dimensional frequency domain[J]. Acta Electronica Sinica, 2012, 40(12): 2415–2420. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201212010.htm
    [31] Carlson B D, Evans E D, and Wilson S L. Search radar detection and track with the Hough transform. I. system concept[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(1): 102–108. doi: 10.1109/7.250410
    [32] Yu Ji, Xu Jia, Peng Ying-ning, et al.. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    [33] Tao Ran, Zhang Nan, and Wang Yue. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 12–22. doi: 10.1049/iet-rsn.2009.0265
    [34] De Wind H J, Cilliers J E, and Herselman P L. Dataware: Sea clutter and small boat radar reflectivity databases[J]. IEEE Signal Processing Magazine, 2010, 27(2): 145–148. doi: 10.1109/MSP.2009.935415
    [35] Chen Xiao-long, Guan Jian, Liu Ning-bo, et al.. Detection of a low observable sea-surface target with micromotion via the Radon-linear canonical transform[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1225–1229. doi: 10.1109/LGRS.2013.2290024
    [36] Kong Ling-jiang, Li Xiao-long, Cui Guo-long, et al.. Coherent integration algorithm for a maneuvering target with high-order range migration[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4474–4486. doi: 10.1109/TSP.2015.2437844
    [37] Li Xiao-long, Cui Guo-long, Yi Wei, et al.. A fast maneuvering target motion parameters estimation algorithm based on ACCF[J]. IEEE Signal Processing Letters, 2015, 22(3): 265–269. doi: 10.1109/LSP.2014.2357681
    [38] Xu Jia, Xia Xiang-gen, Peng Shi-bao, et al.. Radar maneuvering target motion estimation based on generalized Radon-Fourier transform[J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6190–6201. doi: 10.1109/TSP.2012.2217137
    [39] Chen Xiao-long, Huang Yong, Liu Ning-bo, et al.. Radon-fractional ambiguity function-based detection method of low-observable maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 815–833. doi: 10.1109/TAES.2014.130791
    [40] Chen Xiao-long, Guan Jian, Huang Yong, et al.. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [41] Chen Xiao-long, Guan Jian, Li Xiu-you, et al.. Effective coherent integration method for marine target with micromotion via phase differentiation and Radon-Lv’s distribution[J]. IET Radar, Sonar & Navigation (Special Issue: Micro-Doppler), 2015, 9(9): 1284–1295. doi: 10.1049/iet-rsn.2015.0100
    [42] 陈小龙, 关键, 董云龙, 等. 稀疏域海杂波抑制与微动目标检测方法[J]. 电子学报, 2016, 44(4): 860–867. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201604015.htm

    Chen Xiao-long, Guan Jian, Dong Yun-long, et al.. Sea clutter suppression and micromotion target detection in sparse domain[J]. Acta Electronica Sinica, 2016, 44(4): 860–867. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201604015.htm
    [43] Faruk Uysal, Ivan Selesnick, Unnikrishna Pillai, et al.. Dynamic clutter mitigation using sparse optimization[J]. IEEE Aerospace and Electronic Systems Magazine, 2014, 29(7): 37–49. doi: 10.1109/MAES.2014.130137
    [44] Xu Jin, Wang Wei, Gao Jing-huai, et al.. Monochromatic noise removal via sparsity-enabled signal decomposition method[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 533–537. doi: 10.1109/LGRS.2012.2212271
    [45] 罗倩. 基于稀疏表示的杂波建模和微弱运动目标探测[J]. 现代雷达, 2016, 38(2): 43–46. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201602013.htm

    Luo Qian. Small moving target detection using sparse clutter modeling[J]. Modern Radar, 2016, 38(2): 43–46. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD201602013.htm
    [46] Gilbert A, Guha S, Indyk P, et al.. Near-optimal sparse Fourier representations via sampling[C]. Proceedings of the 34th ACM Symposium on Theory of Computing, New York, 2002: 152–161.
    [47] Yang Zhao-cheng, Li Xiang, Wang Hong-qiang, et al.. On clutter sparsity analysis in space-time adaptive processing airborne radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1214–1218. doi: 10.1109/LGRS.2012.2236639
    [48] Laura Anitori, Arian Maleki, Matern Otten, et al.. Design and analysis of compressed sensing radar detectors[J]. IEEE Transactions on Signal Processing, 2013, 61(4): 813–827. doi: 10.1109/TSP.2012.2225057
    [49] Marco F Duarte and Yonina C Eldar. Structured compressed sensing: From theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4053–4085. doi: 10.1109/TSP.2011.2161982
    [50] Yang Jun-gang, Thompson John, Huang Xiao-tao, et al.. Random-frequency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983–994. doi: 10.1109/TGRS.2012.2204891
    [51] 方明, 戴奉周, 刘宏伟, 等. 基于联合稀疏恢复的宽带雷达动目标检测方法[J]. 电子与信息学报, 2015, 37(12): 2977–2983. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512027.htm

    Fang Ming, Dai Feng-zhou, Liu Hong-wei, et al.. Detection of moving targets for wideband radar based on joint-sparse recovery[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2977–2983. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201512027.htm
    [52] 朱厦, 李彦鹏, 黎湘, 等. 基于信号稀疏表示的Chirp信号参数估计方法[J]. 现代雷达, 2008, 30(4): 59–63. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD200804017.htm

    Zhu Xia, Li Yan-peng, Li Xiang, et al.. A new method for parameter estimation of chirp signal based on sparse signal representation[J]. Modern Radar, 2008, 30(4): 59–63. http://www.cnki.com.cn/Article/CJFDTOTAL-XDLD200804017.htm
    [53] 余付平, 冯有前, 高大化, 等. 基于稀疏分解的雷达信号抗噪声干扰方法研究[J]. 系统工程与电子技术, 2011, 33(8): 1765–1769. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201108019.htm

    Yu Fu-ping, Feng You-qian, Gao Da-hua, et al.. Research on anti-noise jamming of radar signals based on sparse decomposition[J]. Systems Engineering and Electronics, 2011, 33(8): 1765–1769. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201108019.htm
    [54] Victor C Chen, Fayin Li, Shen-Shyang Ho, et al.. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [55] Victor C Chen, David Tahmoush, and William J Miceli. Radar Micro-Doppler Signature: Processing and Applications[M]. UK: IET, 2014.
    [56] Li Gang and Pramod K Varshney. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(12): 1939–1404.
    [57] Zhu Sheng-qi, Liao Gui-sheng, Qu Yi, et al.. Ground moving targets imaging algorithm for synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 462–477. doi: 10.1109/TGRS.2010.2053848
    [58] 贺思三, 赵会宁, 张永顺. 基于延迟共轭相乘的弹道目标平动补偿[J]. 雷达学报, 2014, 3(5): 505–510. http://radars.ie.ac.cn/CN/abstract/abstract204.shtml

    He Si-san, Zhao Hui-ning, and Zhang Yong-shun. Translational motion compensation for ballistic targets based on delayed conjugated multiplication[J]. Journal of Radars, 2014, 3(5): 505–510. http://radars.ie.ac.cn/CN/abstract/abstract204.shtml
    [59] 罗迎, 张群, 王国正, 等. 基于复图像OMP分解的宽带雷达微动特征提取方法[J]. 雷达学报, 2012, 1(4): 361–369. http://radars.ie.ac.cn/CN/abstract/abstract49.shtml

    Luo Ying, Zhang Qun, Wang Guo-zheng, et al.. Micro-motion signature extraction method for wideband radar based on complex image OMP decomposition[J]. Journal of Radars, 2012, 1(4): 361–369. http://radars.ie.ac.cn/CN/abstract/abstract49.shtml
    [60] Hadi Zayyani and Babaie-Zadeh M. Approximated Cramér-Rao bound for estimating the mixing matrix in the two-sensor noisy Sparse Component Analysis (SCA)[J]. Digital Signal Processing, 2013, 23: 771–779. doi: 10.1016/j.dsp.2012.12.016
    [61] Ali Gholami. Sparse time-frequency decomposition and some applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(6): 3598–3604. doi: 10.1109/TGRS.2012.2220144
    [62] Patrick Flandrin and Pierre Borgnat. Time-frequency energy distributions meet compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 2974–2982. doi: 10.1109/TSP.2010.2044839
    [63] 陈沛, 赵拥军, 刘成城. 基于稀疏时频分解的盲波束形成算法[J]. 电子与信息学报, 2016, 38(12): 3078–3084. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201612014.htm

    Chen Pei, Zhao Yong-jun, and Liu Cheng-cheng. Blind beamforming algorithm based on sparse time-frequency decomposition[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3078–3084. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201612014.htm
    [64] 陈小龙, 关键, 于晓涵, 等. 基于短时稀疏时频分布的雷达目标微动特征提取及检测方法[J]. 电子与信息学报, 已录用.

    Chen Xiao-long, Guan Jian, Yu Xiao-han, et al.. Radar micro-Doppler signature extraction and detection via short-time sparse time-frequency distribution[J]. Journal of Electronics & Information Technology, Accepted.
    [65] Gilbert A, Indyk P, Iwen M, et al.. Recent developments in the sparse Fourier transform: A compressed Fourier transform for big data[J]. IEEE Signal Processing Magazine, 2014, 31(5): 91–100. doi: 10.1109/MSP.2014.2329131
    [66] Gotz E Pfander and Holger Rauhut. Sparsity in time-frequency representations[J]. Journal of Fourier Analysis and Applications, 2010, 16(2): 233–260. doi: 10.1007/s00041-009-9086-9
    [67] Nicholas Whitelonis and Hao Ling. Application of a compressed sensing based time-frequency distribution for radar signature analysis[C]. 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting, 2012: 1–2.
    [68] Branka Jokanovic, Moeness Amin, and Srdjan Stankovic. Instantaneous frequency and time-frequency signature estimation using compressive sensing[C]. Proceedings of the SPIE 8714, Radar Sensor Technology XVII 871418, 2013. DOI: 10.1117/12.2016636.
    [69] 焦李成, 赵进, 杨淑媛, 等. 稀疏认知学习、计算与识别的研究进展[J]. 计算机学报, 2016, 39(4): 835–851. doi: 10.11897/SP.J.1016.2016.00835

    Jiao Li-cheng, Zhao Jin, Yang Shu-yuan, et al.. Research advances on sparse cognitive learning, computing and recognition[J]. Chinese Journal of Computers, 2016, 39(4): 835–851. doi: 10.11897/SP.J.1016.2016.00835
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 修回日期:  2017-02-21
  • 网络出版日期:  2017-06-28

目录

/

返回文章
返回