多目标跟踪分布式MIMO雷达收发站联合选择优化算法

鲁彦希 何子述 程子扬 刘爽利

鲁彦希, 何子述, 程子扬, 刘爽利. 多目标跟踪分布式MIMO雷达收发站联合选择优化算法[J]. 雷达学报, 2017, 6(1): 73-80. doi: 10.12000/JR16106
引用本文: 鲁彦希, 何子述, 程子扬, 刘爽利. 多目标跟踪分布式MIMO雷达收发站联合选择优化算法[J]. 雷达学报, 2017, 6(1): 73-80. doi: 10.12000/JR16106
Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106
Citation: Lu Yanxi, He Zishu, Cheng Ziyang, Liu Shuangli. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking[J]. Journal of Radars, 2017, 6(1): 73-80. doi: 10.12000/JR16106

多目标跟踪分布式MIMO雷达收发站联合选择优化算法

doi: 10.12000/JR16106
基金项目: 国家自然科学基金(61671139)
详细信息
    作者简介:

    鲁彦希(1990–),男,博士生,研究方向为分布式雷达目标探测。E-mail: Yanxi.Lu@outlook.com

    何子述(1962–),男,教授,研究方向为雷达信号与信息处理、自适应及阵列信号处理、高速实时信号处理与实现。

    程子扬(1990–),男,博士生,研究方向为雷达波形设计与信号处理。

    通讯作者:

    鲁彦希   Yanxi.Lu@outlook.com

  • 中图分类号: TN955+.1

Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking

Funds: The National Natural Science Foundation of China (61671139)
  • 摘要: 在分布式MIMO雷达网络场景下,由于MIMO雷达网络的时间能量资源限制,在同一时间下对某一目标,只允许采用有限数量的发射站和接收站来对其进行监视跟踪。因此需要寻求一种合理有效的方法在满足雷达网络发射站接收站数量约束的前提下尽可能高的提高对目标的跟踪性能。该文利用后验克拉美罗下界(PCRLB)作为性能指标,优化多目标跟踪情况下性能最差的目标构建为一个布尔规划问题(BP)。在将原问题松弛为半正定规划问题后(SDP)利用分块坐标下降迭代法取得联合选择的近似最优解。通过仿真实验,验证了该文提出的方法能够根据目标场景动态的规划选择所需的发射站和接收站。相比固定非动态选择拥有更好的性能。并且在拥有更小计算量的前提下获得了近似于穷举搜索的性能。

     

  • 图  1  发射站接收站实时选择情况

    Figure  1.  Selection results of transmitters and receivers varied with time

    图  2  文中所提优化方法与固定选择方法的性能对比

    Figure  2.  Performance of proposed method and fixed selection method

    图  3  文中所提优化方法与穷举搜索选择方法的性能对比

    Figure  3.  Performance of proposed method and exhaustive search method

    图  4  文中所提优化方法的平均PCRLB与穷举搜索选择方法对比

    Figure  4.  Average performance of proposed method and exhaustive search method

    图  5  文中所提优化方法与穷举搜索法不同场景下的执行时间

    Figure  5.  Execution time of proposed method and exhaustive search method

  • [1] Li J and Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [2] Haimovich A M, Blum R S, and Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
    [3] Joshi S and Boyd S. Sensor selection via convex optimization[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 451–462. doi: 10.1109/TSP.2008.2007095
    [4] Shen X, Liu S, and Varshney P K. Sensor selection for nonlinear systems in large sensor networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 2664–2678. http://adsabs.harvard.edu/abs/2014ITAES..50.2664S
    [5] Masazade E, Fardad M, and Varshney P K. Sparsity-Promoting extended Kalman filtering for target tracking in wireless sensor networks[J]. IEEE Signal Processing Letters, 2012, 19(19): 845–848. https://www.researchgate.net/publication/258655744_Sparsity-Promoting_Extended_Kalman_Filtering_for_Target_Tracking_in_Wireless_Sensor_Networks
    [6] Godrich H, Petropulu A P, and Poor H V. Sensor selection in distributed multiple-radar architectures for localization: A knapsack problem formulation[J]. IEEE Transactions on Signal Processing, 2012, 60(1): 247–260. doi: 10.1109/TSP.2011.2170170
    [7] Ma Botao, Chen Haowen, Sun Bin, et al.. A joint scheme of antenna selection and power allocation for localization in MIMO radar sensor networks[C]. IEEE International Conference on Signal Processing, Hangzhou, China, 2014: 2226–2229. http://ieeexplore.ieee.org/document/7015390/
    [8] Glass J D and Smith L D. MIMO radar resource allocation using posterior Cramér-Rao lower bounds[C]. IEEE Aerospace Conference, Big Sky, MT, USA, 2011: 1–9. http://dl.acm.org/citation.cfm?id=2053918.2054178
    [9] Xie M, Yi W, Kirubajaran T, et al.. Receive-beam allocation for multiple target tracking with distributed MIMO radar systems[C]. IEEE Radar Conference, Philadelphia, PA, USA, 2016. DOI: 10.1109/RADAR. 2016.7485153.
    [10] Godrich H, Tajer A, and Poor H.V. Distributed target tracking in multiple widely separated radar architectures[C]. IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM), Hoboken, NJ, USA, 2012: 153–156. DOI: 10.1109/SAM. 2012.6250453.
    [11] Trees H L V. Detection, Estimation, and Modulation Theory—Part I[M]. Publishing House of Electronics Industry, Beijing, China, 2003: 131–143.
    [12] Tichavsky P, Muravchik C H, and Nehorai A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1386–1396. doi: 10.1109/78.668800
    [13] Boyd S and Vandenberghe L. Convex Optimization[M]. Cambridge University Press, Cambridge, UK, 2004: 55–60.
    [14] Arulampalam M S, Maskell S, Gordon N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374
    [15] Nemirovski A. Interior point polynomial time methods in convex programming[OL]. . 2012.
    [16] Razaviyayn M, Hong M, and Luo Z Q. A unified convergence analysis of block successive minimization methods for nonsmooth optimization[J]. SIAM Journal on Optimization, 2013, 23(2): 1126–1153. doi: 10.1137/120891009
  • 加载中
图(5)
计量
  • 文章访问数:  3273
  • HTML全文浏览量:  583
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-15
  • 修回日期:  2017-01-23
  • 网络出版日期:  2017-02-28

目录

    /

    返回文章
    返回